/// -*- mode: asm; asm-comment-char: ?/ -*- /// /// Fancy SIMD implementation of Salsa20 /// /// (c) 2015 Straylight/Edgeware /// ///----- Licensing notice --------------------------------------------------- /// /// This file is part of Catacomb. /// /// Catacomb is free software; you can redistribute it and/or modify /// it under the terms of the GNU Library General Public License as /// published by the Free Software Foundation; either version 2 of the /// License, or (at your option) any later version. /// /// Catacomb is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU Library General Public License for more details. /// /// You should have received a copy of the GNU Library General Public /// License along with Catacomb; if not, write to the Free /// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, /// MA 02111-1307, USA. ///-------------------------------------------------------------------------- /// External definitions. #include "config.h" #include "asm-common.h" ///-------------------------------------------------------------------------- /// Local utilities. // Magic constants for shuffling. #define ROTL 0x93 #define ROT2 0x4e #define ROTR 0x39 ///-------------------------------------------------------------------------- /// Main code. .arch pentium4 .text FUNC(salsa20_core_x86ish_sse2) // Initial setup. #if CPUFAM_X86 // Arguments come in on the stack, and will need to be collected. We // we can get away with just the scratch registers for integer work, // but we'll run out of XMM registers and will need some properly // aligned space which we'll steal from the stack. I don't trust the // stack pointer's alignment, so I'll have to mask the stack pointer, // which in turn means I'll need to keep track of the old value. // Hence I'm making a full i386-style stack frame here. // // The Windows and SysV ABIs are sufficiently similar that we don't // need to worry about the differences here. # define NR ecx # define IN eax # define OUT edx # define SAVE0 xmm6 # define SAVE1 xmm7 # define SAVE2 [esp + 0] # define SAVE3 [esp + 16] push ebp mov ebp, esp sub esp, 32 mov IN, [ebp + 12] mov OUT, [ebp + 16] and esp, ~15 mov NR, [ebp + 8] #endif #if CPUFAM_AMD64 && ABI_SYSV // This is nice. We have plenty of XMM registers, and the arguments // are in useful places. There's no need to spill anything and we // can just get on with the code. # define NR edi # define IN rsi # define OUT rdx # define SAVE0 xmm6 # define SAVE1 xmm7 # define SAVE2 xmm8 # define SAVE3 xmm9 #endif # if CPUFAM_AMD64 && ABI_WIN // Arguments come in registers, but they're different between Windows // and everyone else (and everyone else is saner). // // The Windows ABI insists that we preserve some of the XMM // registers, but we want more than we can use as scratch space. Two // places we only need to save a copy of the input for the // feedforward at the end; but the other two we want for the final // permutation, so save the old values on the stack (We need an extra // 8 bytes to align the stack.) # define NR ecx # define IN rdx # define OUT r8 # define SAVE0 xmm6 # define SAVE1 xmm7 # define SAVE2 [rsp + 32] # define SAVE3 [rsp + 48] sub rsp, 64 + 8 movdqa [rsp + 0], xmm6 movdqa [rsp + 16], xmm7 #endif // First job is to slurp the matrix into XMM registers. The words // have already been permuted conveniently to make them line up // better for SIMD processing. // // The textbook arrangement of the matrix is this. // // [C K K K] // [K C N N] // [T T C K] // [K K K C] // // But we've rotated the columns up so that the main diagonal with // the constants on it end up in the first row, giving something more // like // // [C C C C] // [K T K K] // [T K K N] // [K K N K] // // so the transformation looks like this: // // [ 0 1 2 3] [ 0 5 10 15] (a, xmm0) // [ 4 5 6 7] --> [ 4 9 14 3] (b, xmm1) // [ 8 9 10 11] [ 8 13 2 7] (c, xmm2) // [12 13 14 15] [12 1 6 11] (d, xmm3) movdqu xmm0, [IN + 0] movdqu xmm1, [IN + 16] movdqu xmm2, [IN + 32] movdqu xmm3, [IN + 48] // Take a copy for later. movdqa SAVE0, xmm0 movdqa SAVE1, xmm1 movdqa SAVE2, xmm2 movdqa SAVE3, xmm3 0: // Apply a column quarterround to each of the columns simultaneously. // Alas, there doesn't seem to be a packed doubleword rotate, so we // have to synthesize it. // b ^= (a + d) <<< 7 movdqa xmm4, xmm0 paddd xmm4, xmm3 movdqa xmm5, xmm4 pslld xmm4, 7 psrld xmm5, 25 por xmm4, xmm5 pxor xmm1, xmm4 // c ^= (b + a) <<< 9 movdqa xmm4, xmm1 paddd xmm4, xmm0 movdqa xmm5, xmm4 pslld xmm4, 9 psrld xmm5, 23 por xmm4, xmm5 pxor xmm2, xmm4 // d ^= (c + b) <<< 13 movdqa xmm4, xmm2 paddd xmm4, xmm1 pshufd xmm1, xmm1, ROTL movdqa xmm5, xmm4 pslld xmm4, 13 psrld xmm5, 19 por xmm4, xmm5 pxor xmm3, xmm4 // a ^= (d + c) <<< 18 movdqa xmm4, xmm3 pshufd xmm3, xmm3, ROTR paddd xmm4, xmm2 pshufd xmm2, xmm2, ROT2 movdqa xmm5, xmm4 pslld xmm4, 18 psrld xmm5, 14 por xmm4, xmm5 pxor xmm0, xmm4 // The transpose conveniently only involves reordering elements of // individual rows, which can be done quite easily, and reordering // the rows themselves, which is a trivial renaming. It doesn't // involve any movement of elements between rows. // // [ 0 5 10 15] [ 0 5 10 15] (a, xmm0) // [ 4 9 14 3] --> [ 1 6 11 12] (b, xmm3) // [ 8 13 2 7] [ 2 7 8 13] (c, xmm2) // [12 1 6 11] [ 3 4 9 14] (d, xmm1) // // The shuffles have quite high latency, so they've been pushed // backwards into the main instruction list. // Apply the row quarterround to each of the columns (yes!) // simultaneously. // b ^= (a + d) <<< 7 movdqa xmm4, xmm0 paddd xmm4, xmm1 movdqa xmm5, xmm4 pslld xmm4, 7 psrld xmm5, 25 por xmm4, xmm5 pxor xmm3, xmm4 // c ^= (b + a) <<< 9 movdqa xmm4, xmm3 paddd xmm4, xmm0 movdqa xmm5, xmm4 pslld xmm4, 9 psrld xmm5, 23 por xmm4, xmm5 pxor xmm2, xmm4 // d ^= (c + b) <<< 13 movdqa xmm4, xmm2 paddd xmm4, xmm3 pshufd xmm3, xmm3, ROTL movdqa xmm5, xmm4 pslld xmm4, 13 psrld xmm5, 19 por xmm4, xmm5 pxor xmm1, xmm4 // a ^= (d + c) <<< 18 movdqa xmm4, xmm1 pshufd xmm1, xmm1, ROTR paddd xmm4, xmm2 pshufd xmm2, xmm2, ROT2 movdqa xmm5, xmm4 pslld xmm4, 18 psrld xmm5, 14 por xmm4, xmm5 pxor xmm0, xmm4 // We had to undo the transpose ready for the next loop. Again, push // back the shuffles because they take a long time coming through. // Decrement the loop counter and see if we should go round again. // Later processors fuse this pair into a single uop. sub NR, 2 ja 0b // Almost there. Firstly, the feedforward addition, and then we have // to write out the result. Here we have to undo the permutation // which was already applied to the input. Shuffling has quite high // latency, so arrange to start a new shuffle into a temporary as // soon as we've written out the old value. paddd xmm0, SAVE0 pshufd xmm4, xmm0, 0x39 movd [OUT + 0], xmm0 paddd xmm1, SAVE1 pshufd xmm5, xmm1, ROTL movd [OUT + 16], xmm1 paddd xmm2, SAVE2 pshufd xmm6, xmm2, ROT2 movd [OUT + 32], xmm2 paddd xmm3, SAVE3 pshufd xmm7, xmm3, ROTR movd [OUT + 48], xmm3 movd [OUT + 4], xmm7 pshufd xmm7, xmm3, ROT2 movd [OUT + 24], xmm7 pshufd xmm3, xmm3, ROTL movd [OUT + 44], xmm3 movd [OUT + 8], xmm6 pshufd xmm6, xmm2, ROTL movd [OUT + 28], xmm6 pshufd xmm2, xmm2, ROTR movd [OUT + 52], xmm2 movd [OUT + 12], xmm5 pshufd xmm5, xmm1, ROTR movd [OUT + 36], xmm5 pshufd xmm1, xmm1, ROT2 movd [OUT + 56], xmm1 movd [OUT + 20], xmm4 pshufd xmm4, xmm0, ROT2 movd [OUT + 40], xmm4 pshufd xmm0, xmm0, ROTL movd [OUT + 60], xmm0 // Tidy things up. #if CPUFAM_X86 mov esp, ebp pop ebp #endif #if CPUFAM_AMD64 && ABI_WIN movdqa xmm6, [rsp + 0] movdqa xmm7, [rsp + 16] add rsp, 64 + 8 #endif // And with that, we're done. ret #undef NR #undef IN #undef OUT #undef SAVE0 #undef SAVE1 #undef SAVE2 #undef SAVE3 ENDFUNC ///----- That's all, folks --------------------------------------------------