progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / base / dispatch.c
... / ...
CommitLineData
1/* -*-c-*-
2 *
3 * CPU-specific dispatch
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8/*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28/*----- Header files ------------------------------------------------------*/
29
30#include "config.h"
31
32#include <assert.h>
33#include <ctype.h>
34#include <stdarg.h>
35#include <stdio.h>
36#include <stdlib.h>
37#include <string.h>
38
39#include <mLib/macros.h>
40
41#include "dispatch.h"
42
43/*----- Intel x86/AMD64 feature probing -----------------------------------*/
44
45#if CPUFAM_X86 || CPUFAM_AMD64
46
47enum {
48 CPUID_1_D, /* eax = 1 => edx&?? */
49# define CPUID1D_SSE2 (1u << 26)
50# define CPUID1D_FXSR (1u << 24)
51
52 CPUID_1_C, /* eax = 1 => ecx&?? */
53# define CPUID1C_PCLMUL (1u << 1)
54# define CPUID1C_SSSE3 (1u << 9)
55# define CPUID1C_AESNI (1u << 25)
56# define CPUID1C_OSXSAVE (1u << 27)
57# define CPUID1C_AVX (1u << 28)
58# define CPUID1C_RDRAND (1u << 30)
59
60 CPUID_7_0_B, /* eax = 7, ecx = 0 => ebx&?? */
61# define CPUID70B_AVX2 (1u << 5)
62# define CPUID70B_RDSEED (1u << 18)
63};
64
65struct cpuid { unsigned a, b, c, d; };
66struct xcr { unsigned lo, hi; };
67extern int dispatch_x86ish_cpuid(struct cpuid *, unsigned a, unsigned c);
68extern int dispatch_x86ish_xmmregisters_p(void);
69extern int dispatch_x86ish_xgetbv(struct xcr *z_out, unsigned c);
70extern int dispatch_x86ish_rdrand(unsigned op, unsigned *);
71
72static void cpuid(struct cpuid *cc, unsigned a, unsigned c)
73{
74 int rc = dispatch_x86ish_cpuid(cc, a, c);
75 if (rc)
76 dispatch_debug("CPUID instruction not available");
77 else
78 dispatch_debug("CPUID(%08x, %08x) -> %08x, %08x, %08x, %08x",
79 a, c, cc->a, cc->b, cc->c, cc->d);
80}
81
82static unsigned cpuid_maxleaf(void)
83 { struct cpuid c; cpuid(&c, 0, 0); return (c.a); }
84
85/* --- @cpuid_feature_p@ --- *
86 *
87 * Arguments: @unsigned leaf@ = leaf to look up
88 * @unsigned bits@ = bits to check
89 *
90 * Returns: Nonzero if all the requested bits are set in the requested
91 * CPUID result.
92 */
93
94static int cpuid_feature_p(unsigned leaf, unsigned bits)
95{
96 struct cpuid c;
97 unsigned r;
98
99 switch (leaf) {
100 case CPUID_1_D:
101 if (cpuid_maxleaf() < 1) return (0);
102 cpuid(&c, 1, 0); r = c.d;
103 break;
104 case CPUID_1_C:
105 if (cpuid_maxleaf() < 1) return (0);
106 cpuid(&c, 1, 0); r = c.c;
107 break;
108 case CPUID_7_0_B:
109 if (cpuid_maxleaf() < 7) return (0);
110 cpuid(&c, 7, 0); r = c.b;
111 break;
112 default:
113 assert(!"unknown cpuid leaf");
114 }
115 return ((r&bits) == bits);
116}
117
118/* --- @{x,y}mm_registers_available_p@ --- *
119 *
120 * Arguments: ---
121 *
122 * Returns: Nonzero if the operating system has made the XMM or YMM
123 * registers available for use.
124 */
125
126static int xmm_registers_available_p(void)
127{
128 int f = dispatch_x86ish_xmmregisters_p();
129
130 dispatch_debug("XMM registers %savailable", f ? "" : "not ");
131 return (f);
132}
133
134static int ymm_registers_available_p(void)
135{
136 struct xcr xcr0;
137 int f;
138
139 f = cpuid_feature_p(CPUID_1_C, CPUID1C_OSXSAVE);
140 dispatch_debug("XGETBV %savailable", f ? "" : "not ");
141 if (!f) return (0);
142
143 dispatch_x86ish_xgetbv(&xcr0, 0); f = (xcr0.lo&0x06) == 0x06;
144 dispatch_debug("YMM state %senabled", f ? "" : "not ");
145 if (!f) return (0);
146
147 return (1);
148}
149
150/* --- @rdrand_works_p@ --- *
151 *
152 *
153 * Arguments: ---
154 *
155 * Returns: Nonzero if the `rdrand' instruction actually works. Assumes
156 * that it's already been verified to be safe to issue.
157 */
158
159enum { OP_RDRAND, OP_RDSEED };
160
161static int rdrand_works_p(unsigned op)
162{
163 unsigned ref, x, i;
164 const char *what;
165
166 switch (op) {
167 case OP_RDRAND: what = "RDRAND"; break;
168 case OP_RDSEED: what = "RDSEED"; break;
169 default: assert(!"unexpected op");
170 }
171
172 /* Check that it doesn't always give the same answer. Try four times: this
173 * will fail with probability %$2^{-128}$% with a truly random generator,
174 * which seems fair enough.
175 */
176 if (dispatch_x86ish_rdrand(op, &ref)) goto fail;
177 for (i = 0; i < 4; i++) {
178 if (dispatch_x86ish_rdrand(op, &x)) goto fail;
179 if (x != ref) goto not_stuck;
180 }
181 dispatch_debug("%s always returns 0x%08x!", what, ref);
182 return (0);
183
184not_stuck:
185 dispatch_debug("%s instruction looks plausible", what);
186 return (1);
187
188fail:
189 dispatch_debug("%s instruction fails too often", what);
190 return (0);
191}
192
193#endif
194
195/*----- General feature probing using auxiliary vectors -------------------*/
196
197/* Try to find the system's definitions for auxiliary vector entries. */
198#ifdef HAVE_SYS_AUXV_H
199# include <sys/auxv.h>
200#endif
201#ifdef HAVE_LINUX_AUXVEC_H
202# include <linux/auxvec.h>
203#endif
204#ifdef HAVE_ASM_HWCAP_H
205# include <asm/hwcap.h>
206#endif
207
208/* The type of entries in the auxiliary vector. I'm assuming that `unsigned
209 * long' matches each platform's word length; if this is false then we'll
210 * need some host-specific tweaking here.
211 */
212union auxval { long i; unsigned long u; const void *p; };
213struct auxentry { unsigned long type; union auxval value; };
214
215/* Register each CPU family's interest in the auxiliary vector. Make sure
216 * that the necessary entry types are defined. This is primarily ordered by
217 * entry type to minimize duplication.
218 */
219#if defined(AT_HWCAP) && CPUFAM_ARMEL
220# define WANT_ANY 1
221# define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
222#endif
223
224#if defined(AT_HWCAP) && CPUFAM_ARM64
225# define WANT_ANY 1
226# define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
227#endif
228
229#if defined(AT_HWCAP2) && CPUFAM_ARMEL
230# define WANT_ANY 1
231# define WANT_AT_HWCAP2(_) _(AT_HWCAP2, u, hwcap2)
232#endif
233
234/* If we couldn't find any interesting entries then we can switch all of this
235 * machinery off. Also do that if we have no means for atomic updates.
236 */
237#if WANT_ANY && CPU_DISPATCH_P
238
239/* The main output of this section is a bitmask of detected features. The
240 * least significant bit will be set if we've tried to probe. Always access
241 * this using `DISPATCH_LOAD' and `DISPATCH_STORE'.
242 */
243static unsigned hwcaps = 0;
244
245/* For each potentially interesting type which turned out not to exist or be
246 * wanted, define a dummy macro for the sake of the next step.
247 */
248#ifndef WANT_AT_HWCAP
249# define WANT_AT_HWCAP(_)
250#endif
251#ifndef WANT_AT_HWCAP2
252# define WANT_AT_HWCAP2(_)
253#endif
254
255/* For each CPU family, define two lists.
256 *
257 * * `WANTAUX' is a list of the `WANT_AT_MUMBLE' macros which the CPU
258 * family tried to register interest in above. Each entry contains the
259 * interesting auxiliary vector entry type, the name of the union branch
260 * for its value, and the name of the slot in `struct auxprobe' in which
261 * to store the value.
262 *
263 * * `CAPMAP' is a list describing the output features which the CPU family
264 * intends to satisfy from the auxiliary vector. Each entry contains a
265 * feature name suffix, and the token name (for `check_env').
266 */
267#if CPUFAM_ARMEL
268# define WANTAUX(_) \
269 WANT_AT_HWCAP(_) \
270 WANT_AT_HWCAP2(_)
271# define CAPMAP(_) \
272 _(ARM_VFP, "arm:vfp") \
273 _(ARM_NEON, "arm:neon") \
274 _(ARM_V4, "arm:v4") \
275 _(ARM_D32, "arm:d32") \
276 _(ARM_AES, "arm:aes") \
277 _(ARM_PMULL, "arm:pmull")
278#endif
279#if CPUFAM_ARM64
280# define WANTAUX(_) \
281 WANT_AT_HWCAP(_)
282# define CAPMAP(_) \
283 _(ARM_NEON, "arm:neon") \
284 _(ARM_AES, "arm:aes") \
285 _(ARM_PMULL, "arm:pmull")
286#endif
287
288/* Build the bitmask for `hwcaps' from the `CAPMAP' list. */
289enum {
290 HFI_PROBED = 0,
291#define HFI__ENUM(feat, tok) HFI_##feat,
292 CAPMAP(HFI__ENUM)
293#undef HFI__ENUM
294 HFI__END
295};
296enum {
297 HF_PROBED = 1,
298#define HF__FLAG(feat, tok) HF_##feat = 1 << HFI_##feat,
299 CAPMAP(HF__FLAG)
300#undef HF__FLAG
301 HF__END
302};
303
304/* Build a structure in which we can capture the interesting data from the
305 * auxiliary vector.
306 */
307#define AUXUTYPE_i long
308#define AUXUTYPE_u unsigned long
309#define AUXUTYPE_p const void *
310struct auxprobe {
311#define AUXPROBE__SLOT(type, ubranch, slot) AUXUTYPE_##ubranch slot;
312 WANTAUX(AUXPROBE__SLOT)
313#undef AUXPROBE_SLOT
314};
315
316/* --- @probe_hwcaps@ --- *
317 *
318 * Arguments: ---
319 *
320 * Returns: ---
321 *
322 * Use: Attempt to find the auxiliary vector (which is well hidden)
323 * and discover interesting features from it.
324 */
325
326static void probe_hwcaps(void)
327{
328 unsigned hw = HF_PROBED;
329 struct auxprobe probed = { 0 };
330
331 /* Populate `probed' with the information we manage to retrieve from the
332 * auxiliary vector. Slots we couldn't find are left zero-valued.
333 */
334#if defined(HAVE_GETAUXVAL)
335 /* Shiny new libc lets us request individual entry types. This is almost
336 * too easy.
337 */
338# define CAP__GET(type, ubranch, slot) \
339 probed.slot = (AUXUTYPE_##ubranch)getauxval(type);
340 WANTAUX(CAP__GET)
341#else
342 /* Otherwise we're a bit stuck, really. Modern Linux kernels make a copy
343 * of the vector available in `/procc' so we could try that.
344 *
345 * The usual place is stuck on the end of the environment vector, but that
346 * may well have moved, and we have no way of telling whether it has or
347 * whether there was ever an auxiliary vector there at all; so don't do
348 * that.
349 */
350 {
351 FILE *fp = 0;
352 unsigned char *p = 0, *q = 0;
353 const struct auxentry *a;
354 size_t sz, off, n;
355
356 /* Open the file and read it into a memory chunk. */
357 if ((fp = fopen("/proc/self/auxv", "rb")) == 0) goto clean;
358 sz = 4096; off = 0;
359 if ((p = malloc(sz)) == 0) goto clean;
360 for (;;) {
361 n = fread(p + off, 1, sz - off, fp);
362 off += n;
363 if (off < sz) break;
364 sz *= 2; if ((q = realloc(p, sz)) == 0) break;
365 p = q;
366 }
367
368 /* Work through the vector (or as much of it as we found) and extract the
369 * types we're interested in.
370 */
371 for (a = (const struct auxentry *)p,
372 n = sz/sizeof(struct auxentry);
373 n--; a++) {
374 switch (a->type) {
375#define CAP__SWITCH(type, ubranch, slot) \
376 case type: probed.slot = a->value.ubranch; break;
377 WANTAUX(CAP__SWITCH)
378 case AT_NULL: goto clean;
379 }
380 }
381
382 clean:
383 if (p) free(p);
384 if (fp) fclose(fp);
385 }
386#endif
387
388 /* Each CPU family now has to pick through what was found and stashed in
389 * `probed', and set the appropriate flag bits in `hw'.
390 */
391#if CPUFAM_ARMEL
392 if (probed.hwcap & HWCAP_VFPv3) hw |= HF_ARM_VFP;
393 if (probed.hwcap & HWCAP_NEON) hw |= HF_ARM_NEON;
394 if (probed.hwcap & HWCAP_VFPD32) hw |= HF_ARM_D32;
395 if (probed.hwcap & HWCAP_VFPv4) hw |= HF_ARM_V4;
396# ifdef HWCAP2_AES
397 if (probed.hwcap2 & HWCAP2_AES) hw |= HF_ARM_AES;
398# endif
399# ifdef HWCAP2_PMULL
400 if (probed.hwcap2 & HWCAP2_PMULL) hw |= HF_ARM_PMULL;
401# endif
402#endif
403#if CPUFAM_ARM64
404 if (probed.hwcap & HWCAP_ASIMD) hw |= HF_ARM_NEON;
405 if (probed.hwcap & HWCAP_AES) hw |= HF_ARM_AES;
406 if (probed.hwcap & HWCAP_PMULL) hw |= HF_ARM_PMULL;
407#endif
408
409 /* Store the bitmask of features we probed for everyone to see. */
410 DISPATCH_STORE(hwcaps, hw);
411
412 /* Finally, make a report about the things we found. (Doing this earlier
413 * will pointlessly widen the window in which multiple threads will do the
414 * above auxiliary-vector probing.)
415 */
416#define CAP__DEBUG(feat, tok) \
417 dispatch_debug("check auxv for feature `%s': %s", tok, \
418 hw & HF_##feat ? "available" : "absent");
419 CAPMAP(CAP__DEBUG)
420#undef CAP__DEBUG
421}
422
423/* --- @get_hwcaps@ --- *
424 *
425 * Arguments: ---
426 *
427 * Returns: A mask of hardware capabilities and other features, as probed
428 * from the auxiliary vector.
429 */
430
431static unsigned get_hwcaps(void)
432{
433 unsigned hw;
434
435 DISPATCH_LOAD(hwcaps, hw);
436 if (!(hw & HF_PROBED)) { probe_hwcaps(); DISPATCH_LOAD(hwcaps, hw); }
437 return (hw);
438}
439
440#endif
441
442/*----- External interface ------------------------------------------------*/
443
444/* --- @dispatch_debug@ --- *
445 *
446 * Arguments: @const char *fmt@ = a format string
447 * @...@ = additional arguments
448 *
449 * Returns: ---
450 *
451 * Use: Writes a formatted message to standard output if dispatch
452 * debugging is enabled.
453 */
454
455void dispatch_debug(const char *fmt, ...)
456{
457 va_list ap;
458 const char *e = getenv("CATACOMB_CPUDISPATCH_DEBUG");
459
460 if (e && *e != 'n' && *e != '0') {
461 va_start(ap, fmt);
462 fputs("Catacomb CPUDISPATCH: ", stderr);
463 vfprintf(stderr, fmt, ap);
464 fputc('\n', stderr);
465 va_end(ap);
466 }
467}
468
469/* --- @check_env@ --- *
470 *
471 * Arguments: @const char *ftok@ = feature token
472 *
473 * Returns: Zero if the feature is forced off; positive if it's forced
474 * on; negative if the user hasn't decided.
475 *
476 * Use: Checks the environment variable `CATACOMB_CPUFEAT' for the
477 * feature token @ftok@. The variable, if it exists, should be
478 * a space-separated sequence of `+tok' and `-tok' items. These
479 * tokens may end in `*', which matches any suffix.
480 */
481
482static int IGNORABLE check_env(const char *ftok)
483{
484 const char *p, *q, *pp;
485 int d;
486
487 p = getenv("CATACOMB_CPUFEAT");
488 if (!p) return (-1);
489
490 for (;;) {
491 while (ISSPACE(*p)) p++;
492 if (!*p) return (-1);
493 switch (*p) {
494 case '+': d = +1; p++; break;
495 case '-': d = 0; p++; break;
496 default: d = -1; break;
497 }
498 for (q = p; *q && !ISSPACE(*q); q++);
499 if (d >= 0) {
500 for (pp = ftok; p < q && *pp && *p == *pp; p++, pp++);
501 if ((p == q && !*pp) || (*p == '*' && p + 1 == q)) return (d);
502 }
503 p = q;
504 }
505 return (-1);
506}
507
508/* --- @cpu_feature_p@ --- *
509 *
510 * Arguments: @unsigned feat@ = a @CPUFEAT_...@ code
511 *
512 * Returns: Nonzero if the feature is available.
513 */
514
515#include <stdio.h>
516
517static int IGNORABLE
518 feat_debug(const char *ftok, const char *check, int verdict)
519{
520 if (verdict >= 0) {
521 dispatch_debug("feature `%s': %s -> %s", ftok, check,
522 verdict ? "available" : "absent");
523 }
524 return (verdict);
525}
526
527int cpu_feature_p(int feat)
528{
529 int IGNORABLE f;
530 IGNORE(f);
531#define CASE_CPUFEAT(feat, ftok, cond) case CPUFEAT_##feat: \
532 if ((f = feat_debug(ftok, "environment override", check_env(ftok))) >= 0) \
533 return (f); \
534 else \
535 return (feat_debug(ftok, "runtime probe", cond));
536
537 switch (feat) {
538#if CPUFAM_X86 || CPUFAM_AMD64
539 CASE_CPUFEAT(X86_SSE2, "x86:sse2",
540 cpuid_feature_p(CPUID_1_D, CPUID1D_SSE2) &&
541 xmm_registers_available_p());
542 CASE_CPUFEAT(X86_AESNI, "x86:aesni",
543 cpuid_feature_p(CPUID_1_C, CPUID1C_AESNI) &&
544 xmm_registers_available_p());
545 CASE_CPUFEAT(X86_RDRAND, "x86:rdrand",
546 cpuid_feature_p(CPUID_1_C, CPUID1C_RDRAND) &&
547 rdrand_works_p(OP_RDRAND));
548 CASE_CPUFEAT(X86_AVX, "x86:avx",
549 cpuid_feature_p(CPUID_1_C, CPUID1C_AVX) &&
550 ymm_registers_available_p());
551 CASE_CPUFEAT(X86_AVX2, "x86:avx2",
552 cpuid_feature_p(CPUID_1_C, CPUID1C_AVX) &&
553 cpuid_feature_p(CPUID_7_0_B, CPUID70B_AVX2) &&
554 ymm_registers_available_p());
555 CASE_CPUFEAT(X86_SSSE3, "x86:ssse3",
556 cpuid_feature_p(CPUID_1_C, CPUID1C_SSSE3) &&
557 xmm_registers_available_p());
558 CASE_CPUFEAT(X86_PCLMUL, "x86:pclmul",
559 cpuid_feature_p(CPUID_1_C, CPUID1C_PCLMUL) &&
560 xmm_registers_available_p());
561 CASE_CPUFEAT(X86_RDSEED, "x86:rdseed",
562 cpuid_feature_p(CPUID_7_0_B, CPUID70B_RDSEED) &&
563 rdrand_works_p(OP_RDSEED));
564#endif
565#ifdef CAPMAP
566# define FEATP__CASE(feat, tok) \
567 CASE_CPUFEAT(feat, tok, get_hwcaps() & HF_##feat)
568 CAPMAP(FEATP__CASE)
569#undef FEATP__CASE
570#endif
571 default:
572 dispatch_debug("denying unknown feature %d", feat);
573 return (0);
574 }
575#undef CASE_CPUFEAT
576}
577
578/*----- That's all, folks -------------------------------------------------*/