symm/t/poly1305: Add the tests from Bernstein's original paper.
[catacomb] / symm / poly1305.c
CommitLineData
57496a50
MW
1/* -*-c-*-
2 *
3 * Poly1305 message authentication code
4 *
5 * (c) 2017 Straylight/Edgeware
6 */
7
8/*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28/*----- Header files ------------------------------------------------------*/
29
30#include "config.h"
31
32#include <assert.h>
33#include <string.h>
34
35#include "poly1305.h"
36
37/*----- Global variables --------------------------------------------------*/
38
39const octet poly1305_keysz[] = { KSZ_SET, 16, 0 };
40
41/*----- Low-level implementation for 32/64-bit targets --------------------*/
42
43#if !defined(POLY1305_IMPL) && defined(HAVE_UINT64)
44# define POLY1305_IMPL 26
45#endif
46
47#if POLY1305_IMPL == 26
48
49/* Elements x of GF(2^130 - 5) are represented by five integers x_i: x =
50 * SUM_{0<=i<5} x_i 2^{26i}.
51 *
52 * Not all elements are represented canonically. We have 0 <= r_i, s_i <
53 * 2^26 by construction. We maintain 0 <= h_i < 2^27. When we read a
54 * message block m, we have 0 <= m_i < 2^26 by construction again. When we
55 * update the hash state, we calculate h' = r (h + m). Addition is done
56 * componentwise; let t = h + m, and we will have 0 <= t_i < 3*2^26.
57 */
58typedef uint32 felt[5];
59#define M26 0x03ffffff
60#define P p26
61
62/* Convert 32-bit words into field-element pieces. */
8c3c0886
MW
63#define P26W0(x) (((x##0) << 0)&0x03ffffff)
64#define P26W1(x) ((((x##1) << 6)&0x03ffffc0) | (((x##0) >> 26)&0x0000003f))
65#define P26W2(x) ((((x##2) << 12)&0x03ffffff) | (((x##1) >> 20)&0x00000fff))
66#define P26W3(x) ((((x##3) << 18)&0x03fc0000) | (((x##2) >> 14)&0x0003ffff))
6fb4ecfb 67#define P26W4(x) (((x##3) >> 8)&0x00ffffff)
57496a50
MW
68
69/* Propagate carries in parallel. If 0 <= u_i < 2^26 c_i, then we shall have
70 * 0 <= v_0 < 2^26 + 5 c_4, and 0 <= v_i < 2^26 + c_{i-1} for 1 <= i < 5.
71 */
72#define CARRY_REDUCE(v, u) do { \
73 (v##0) = ((u##0)&M26) + 5*((u##4) >> 26); \
74 (v##1) = ((u##1)&M26) + ((u##0) >> 26); \
75 (v##2) = ((u##2)&M26) + ((u##1) >> 26); \
76 (v##3) = ((u##3)&M26) + ((u##2) >> 26); \
77 (v##4) = ((u##4)&M26) + ((u##3) >> 26); \
78} while (0)
79
80/* General multiplication, used by `concat'. */
81static void mul(felt z, const felt x, const felt y)
82{
83 /* Initial bounds: we assume x_i, y_i < 2^27. On exit, z_i < 2^27. */
84
85 uint32 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4];
86 uint32 y0 = y[0], y1 = y[1], y2 = y[2], y3 = y[3], y4 = y[4];
87 uint64 u0, u1, u2, u3, u4;
88 uint64 v0, v1, v2, v3, v4;
89 uint32 z0, z1, z2, z3, z4;
90
91 /* Do the multiplication: u = h x mod 2^130 - 5. We will have u_i <
92 * 2^27 (5 (4 - i) + i + 1) 2^27 = 2^54 (21 - 4 i) = 2^52 (84 - 16 i). In
93 * all cases we have u_i < 84*2^52 < 2^59. Notably, u_4 < 5*2^54 =
94 * 20*2^52.
95 */
96#define M(x, y) ((uint64)(x)*(y))
97 u0 = M(x0, y0) + (M(x1, y4) + M(x2, y3) + M(x3, y2) + M(x4, y1))*5;
98 u1 = M(x0, y1) + M(x1, y0) + (M(x2, y4) + M(x3, y3) + M(x4, y2))*5;
99 u2 = M(x0, y2) + M(x1, y1) + M(x2, y0) + (M(x3, y4) + M(x4, y3))*5;
100 u3 = M(x0, y3) + M(x1, y2) + M(x2, y1) + M(x3, y0) + (M(x4, y4))*5;
101 u4 = M(x0, y4) + M(x1, y3) + M(x2, y2) + M(x3, y1) + M(x4, y0);
102#undef M
103
104 /* Now we must reduce the coefficients. We do this in an approximate
105 * manner which avoids long data-dependency chains, but requires two
106 * passes.
107 *
108 * The reduced carry down from u_4 to u_0 in the first pass will be c_0 <
109 * 100*2^26; the remaining c_i are smaller: c_i < 2^26 (84 - 16 i). This
110 * leaves 0 <= v_i < 101*2^26. The carries in the second pass are bounded
111 * above by 180.
112 */
113 CARRY_REDUCE(v, u); CARRY_REDUCE(z, v);
114 z[0] = z0; z[1] = z1; z[2] = z2; z[3] = z3; z[4] = z4;
115}
116
117/* General squaring, used by `concat'. */
118static void sqr(felt z, const felt x)
119{
120 /* Initial bounds: we assume x_i < 2^27. On exit, z_i < 2^27. */
121
122 uint32 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4];
123 uint64 u0, u1, u2, u3, u4;
124 uint64 v0, v1, v2, v3, v4;
125 uint32 z0, z1, z2, z3, z4;
126
127 /* Do the squaring. See `mul' for bounds. */
128#define M(x, y) ((uint64)(x)*(y))
129 u0 = M(x0, x0) + 10*(M(x1, x4) + M(x2, x3));
130 u1 = 2* M(x0, x1) + 5*(M(x3, x3) + 2*M(x2, x4));
131 u2 = M(x1, x1) + 2* M(x0, x2) + 10* M(x3, x4);
132 u3 = 2*(M(x0, x3) + M(x1, x2)) + 5* M(x4, x4);
133 u4 = M(x2, x2) + 2*(M(x0, x4) + M(x1, x3));
134#undef M
135
136 /* Now we must reduce the coefficients. See `mul' for bounds. */
137 CARRY_REDUCE(v, u); CARRY_REDUCE(z, v);
138 z[0] = z0; z[1] = z1; z[2] = z2; z[3] = z3; z[4] = z4;
139}
140
141/* Multiplication by r, using precomputation. */
142static void mul_r(const poly1305_ctx *ctx, felt z, const felt x)
143{
144 /* Initial bounds: by construction, r_i < 2^26. We assume x_i < 3*2^26.
145 * On exit, z_i < 2^27.
146 */
147
148 uint32
149 r0 = ctx->k.u.p26.r0,
150 r1 = ctx->k.u.p26.r1, rr1 = ctx->k.u.p26.rr1,
151 r2 = ctx->k.u.p26.r2, rr2 = ctx->k.u.p26.rr2,
152 r3 = ctx->k.u.p26.r3, rr3 = ctx->k.u.p26.rr3,
153 r4 = ctx->k.u.p26.r4, rr4 = ctx->k.u.p26.rr4;
154 uint32 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4];
155 uint64 u0, u1, u2, u3, u4;
156 uint64 v0, v1, v2, v3, v4;
157 uint32 z0, z1, z2, z3, z4;
158
159 /* Do the multiplication: u = h x mod 2^130 - 5. We will have u_i <
160 * 2^26 (5 (4 - i) + i + 1) 3*2^26 = 2^52 (63 - 12 i). In all cases
161 * we have u_i < 63*2^52 < 2^58. Notably, u_4 < 15*2^52.
162 */
163#define M(x, y) ((uint64)(x)*(y))
164 u0 = M(x0, r0) + M(x1, rr4) + M(x2, rr3) + M(x3, rr2) + M(x4, rr1);
165 u1 = M(x0, r1) + M(x1, r0) + M(x2, rr4) + M(x3, rr3) + M(x4, rr2);
166 u2 = M(x0, r2) + M(x1, r1) + M(x2, r0) + M(x3, rr4) + M(x4, rr3);
167 u3 = M(x0, r3) + M(x1, r2) + M(x2, r1) + M(x3, r0) + M(x4, rr4);
168 u4 = M(x0, r4) + M(x1, r3) + M(x2, r2) + M(x3, r1) + M(x4, r0);
169#undef M
170
171 /* Now we must reduce the coefficients. We do this in an approximate
172 * manner which avoids long data-dependency chains, but requires two
173 * passes.
174 *
175 * The reduced carry down from u_4 to u_0 in the first pass will be c_0 <
176 * 75*2^26; the remaining c_i are smaller: c_i < 2^26 (63 - 12 i). This
177 * leaves 0 <= v_i < 76*2^26. The carries in the second pass are bounded
178 * above by 135.
179 */
180 CARRY_REDUCE(v, u); CARRY_REDUCE(z, v);
181 z[0] = z0; z[1] = z1; z[2] = z2; z[3] = z3; z[4] = z4;
182}
183
184#endif
185
186/*----- Low-level implementation for 32/64-bit targets --------------------*/
187
188#ifndef POLY1305_IMPL
189# define POLY1305_IMPL 11
190#endif
191
192#if POLY1305_IMPL == 11
193
194/* Elements x of GF(2^130 - 5) are represented by 12 integers x_i: x =
195 * SUM_{0<=i<12} x_i 2^P_i, where P_i = SUM_{0<=j<i} w_j, and w_5 = w_11 =
196 * 10, and w_i = 11 for i in { 0, 1, 2, 3, 4, 6, 7, 8, 9, 10 }.
197 *
198 * Not all elements are represented canonically. We have 0 <= r_i, s_i <
199 * 2^w_i <= 2^11 by construction. We maintain 0 <= h_i < 2^12. When we read
200 * a message block m, we have 0 <= m_i < 2^w_i by construction again. When
201 * we update the hash state, we calculate h' = r (h + m). Addition is done
202 * componentwise; let t = h + m, and we will have 0 <= t_i < 3*2^11.
203 */
204typedef uint16 felt[12];
205#define M10 0x3ff
206#define M11 0x7ff
207#define P p11
208
209/* Load a field element from an octet string. */
210static void load_p11(felt d, const octet *s)
211{
212 unsigned i, j, n, w;
213 uint16 m;
214 uint32 a;
215
216 for (i = j = n = 0, a = 0; j < 12; j++) {
217 if (j == 5 || j == 11) { w = 10; m = M10; }
218 else { w = 11; m = M11; }
219 while (n < w && i < 16) { a |= s[i++] << n; n += 8; }
220 d[j] = a&m; a >>= w; n -= w;
221 }
222}
223
224/* Reduce a field-element's pieces to manageable size. */
225static void carry_reduce(uint32 u[12])
226{
227 /* Initial bounds: we assume u_i < 636*2^22. On exit, u_i < 2^11. */
228
229 unsigned i;
230 uint32 c;
231
232 /* Do sequential carry propagation (16-bit CPUs are less likely to benefit
57e7040b
MW
233 * from instruction-level parallelism). Start at u_9; truncate it to 11
234 * bits, and add the carry onto u_10. Truncate u10 to 11 bits, and add the
235 * carry onto u_11. Truncate u_11 to 10 bits, and add five times the carry
236 * onto u_0. And so on.
57496a50
MW
237 *
238 * The carry is larger than the pieces we're leaving behind. Let c_i be
239 * the high portion of u_i, to be carried onto u_{i+1}. I claim that c_i <
240 * 2557*2^10. Then the carry /into/ any u_i is at most 12785*2^10 < 2^24
241 * (allowing for the reduction as we carry from u_11 to u_0), and u_i after
242 * carry is bounded above by 636*2^22 + 12785*2^10 < 2557*2^20. Hence, the
243 * carry out is at most 2557*2^10, as claimed.
244 *
57e7040b
MW
245 * Once we reach u_9 for the second time, we start with u_9 < 2^11. The
246 * carry into u_9 is at most 2557*2^10 < 1279*2^11 as calculated above; so
247 * the carry out into u_10 is at most 1280. Since u_10 < 2^11 prior to
248 * this carry in, we now have u_10 < 2^11 + 1280 < 2^12; so the carry out
249 * into u_11 is at most 1. The final reduction therefore only needs a
250 * conditional subtraction.
57496a50 251 */
57e7040b
MW
252 { c = u[9] >> 11; u[9] &= M11; }
253 { u[10] += c; c = u[10] >> 11; u[10] &= M11; }
57496a50
MW
254 { u[11] += c; c = u[11] >> 10; u[11] &= M10; }
255 { u[0] += 5*c; c = u[0] >> 11; u[0] &= M11; }
256 for (i = 1; i < 5; i++) { u[i] += c; c = u[i] >> 11; u[i] &= M11; }
257 { u[5] += c; c = u[5] >> 10; u[5] &= M10; }
258 for (i = 6; i < 11; i++) { u[i] += c; c = u[i] >> 11; u[i] &= M11; }
259 u[11] += c;
260}
261
262/* General multiplication. */
263static void mul(felt z, const felt x, const felt y)
264{
265 /* Initial bounds: we assume x_i < 3*2^11, and y_i < 2^12. On exit,
266 * z_i < 2^12.
267 */
268
269 uint32 u[12];
270 unsigned i, j, k;
271
272 /* Do the main multiplication. After this, we shall have
273 *
274 * { 2^22 (636 - 184 i) for 0 <= i < 6
275 * u_i < {
276 * { 2^22 (732 - 60 i) for 6 <= i < 12
277 *
278 * In particular, u_0 < 636*2^22 < 2^32, and u_11 < 72*2^22.
279 *
280 * The irregularly positioned pieces are annoying. Because we fold the
281 * reduction into the multiplication, it's also important to see where the
282 * reduced products fit. Finally, products don't align with the piece
283 * boundaries, and sometimes need to be doubled. The following table
284 * tracks all of this.
285 *
286 * piece width offset second
287 * 0 11 0 130
288 * 1 11 11 141
289 * 2 11 22 152
290 * 3 11 33 163
291 * 4 11 44 174
292 * 5 10 55 185
293 * 6 11 65 195
294 * 7 11 76 206
295 * 8 11 87 217
296 * 9 11 98 228
297 * 10 11 109 239
298 * 11 10 120 250
299 *
300 * The next table tracks exactly which products end up being multiplied by
301 * which constants and accumulated into which destination pieces.
302 *
303 * u_k = t_i r_j + 2 t_i r_j + 5 t_i r_j + 10 t_i r_j
304 * 0 0/0 -- 6/6 1-5/11-7 7-11/5-1
305 * 1 0-1/1-0 -- 6-7/7-6 2-5/11-8 8-11/5-2
306 * 2 0-2/2-0 -- 6-8/8-6 3-5/11-9 9-11/5-3
307 * 3 0-3/3-0 -- 6-9/9-6 4-5/11-10 10-11/5-4
308 * 4 0-4/4-0 -- 6-10/10-6 5/11 11/5
309 * 5 0-5/5-0 -- 6-11/11-6 --
310 * 6 0/6 6/0 1-5/5-1 -- 7-11/11-7
311 * 7 0-1/7-6 6-7/1-0 2-5/5-2 -- 8-11/11-8
312 * 8 0-2/8-6 6-8/2-0 3-5/5-3 -- 9-11/11-9
313 * 9 0-3/9-6 6-9/3-0 4-5/5-4 -- 10-11/11-10
314 * 10 0-4/10-6 6-10/4-0 5/5 -- 11/11
315 * 11 0-11/11-0 -- -- --
316 *
317 * And, finally, trying to bound the multiple of 6*2^22 in each destination
318 * piece is fiddly, so here's a tableau showing the calculation.
319 *
320 * k 1* + 2* + 5* +10* = 1* + 5* =
321 * 0 1 -- 1 10 1 21 106
322 * 1 2 -- 2 8 2 18 92
323 * 2 3 -- 3 6 3 15 78
324 * 3 4 -- 4 4 4 12 64
325 * 4 5 -- 5 2 5 9 50
326 * 5 6 -- 6 -- 6 6 36
327 * 6 2 5 -- 5 12 10 62
328 * 7 4 4 -- 4 12 8 52
329 * 8 6 3 -- 3 12 6 42
330 * 9 8 2 -- 2 12 4 32
331 * 10 10 1 -- 1 12 2 22
332 * 11 12 -- -- -- 12 0 12
333 */
334
335 for (i = 0; i < 12; i++) u[i] = 0;
336
337#define M(i, j) ((uint32)x[i]*y[j])
338
339 /* Product terms we must multiply by 10. */
340 for (k = 0; k < 5; k++) {
341 for (i = k + 1; i < 6; i++) {
342 j = 12 + k - i;
343 u[k] += M(i, j) + M(j, i);
344 u[k + 6] += M(i + 6, j);
345 }
346 }
347 for (k = 0; k < 5; k++) u[k] *= 2;
348 for (k = 6; k < 11; k++) u[k] *= 5;
349
350 /* Product terms we must multiply by 5. */
351 for (k = 0; k < 6; k++) {
352 for (i = k + 6; i >= 6; i--) {
353 j = 12 + k - i;
354 u[k] += M(i, j);
355 }
356 }
357 for (k = 0; k < 6; k++) u[k] *= 5;
358
359 /* Product terms we must multiply by 2. */
360 for (k = 6; k < 11; k++) {
361 for (i = k - 5; i < 6; i++) {
362 j = k - i;
363 u[k] += M(i, j);
364 }
365 }
366 for (k = 6; k < 11; k++) u[k] *= 2;
367
368 /* Remaining product terms. */
369 for (k = 0; k < 6; k++) {
370 for (i = k; i < 6; i--) {
371 j = k - i;
372 u[k] += M(i, j);
373 u[k + 6] += M(i + 6, j) + M(i, j + 6);
374 }
375 }
376
377#undef M
378
379 /* Do the reduction. Currently, `carry_reduce' does more than we need, but
380 * that's fine.
381 */
382 carry_reduce(u);
383
384 /* Done. Write out the answer. */
385 for (i = 0; i < 12; i++) z[i] = u[i];
386}
387
388/* General squaring, used by `concat'. */
389static void sqr(felt z, const felt x)
390 { mul(z, x, x); }
391
392/* Multiplication by r. */
393static void mul_r(const poly1305_ctx *ctx, felt z, const felt x)
394 { mul(z, x, ctx->k.u.p11.r); }
395
396#endif
397
398/*----- Interface functions -----------------------------------------------*/
399
400/* --- @poly1305_keyinit@ --- *
401 *
402 * Arguments: @poly1305_key *key@ = key structure to fill in
403 * @const void *k@ = pointer to key material
404 * @size_t ksz@ = length of key (must be @POLY1305_KEYSZ == 16@)
405 *
406 * Returns: ---
407 *
408 * Use: Records a Poly1305 key and performs (minimal)
409 * precomputations.
410 */
411
412void poly1305_keyinit(poly1305_key *key, const void *k, size_t ksz)
413{
414 const octet *r = k;
415#if POLY1305_IMPL == 11
416 octet rr[16];
417#endif
418
419 KSZ_ASSERT(poly1305, ksz);
420
421#if POLY1305_IMPL == 26
422 uint32 r0 = LOAD32_L(r + 0), r1 = LOAD32_L(r + 4),
423 r2 = LOAD32_L(r + 8), r3 = LOAD32_L(r + 12);
424
425 r0 &= 0x0fffffff; r1 &= 0x0ffffffc; r2 &= 0x0ffffffc; r3 &= 0x0ffffffc;
426 key->u.p26.r0 = P26W0(r); key->u.p26.r1 = P26W1(r);
427 key->u.p26.r2 = P26W2(r); key->u.p26.r3 = P26W3(r);
428 key->u.p26.r4 = P26W4(r);
429
430 key->u.p26.rr1 = 5*key->u.p26.r1; key->u.p26.rr2 = 5*key->u.p26.r2;
431 key->u.p26.rr3 = 5*key->u.p26.r3; key->u.p26.rr4 = 5*key->u.p26.r4;
432#else
433 memcpy(rr, r, 16);
434 rr[ 3] &= 0x0f;
435 rr[ 4] &= 0xfc; rr[ 7] &= 0x0f;
436 rr[ 8] &= 0xfc; rr[11] &= 0x0f;
437 rr[12] &= 0xfc; rr[15] &= 0x0f;
438 load_p11(key->u.p11.r, rr);
439#endif
440}
441
442/* --- @poly1305_macinit@ --- *
443 *
444 * Arguments: @poly1305_ctx *ctx@ = MAC context to fill in
445 * @const poly1305_key *key@ = pointer to key structure to use
446 * @const void *iv@ = pointer to mask string
447 *
448 * Returns: ---
449 *
450 * Use: Initializes a MAC context for use. The key can be discarded
451 * at any time.
452 *
453 * It is permitted for @iv@ to be null, though it is not then
454 * possible to complete the MAC computation on @ctx@. The
455 * resulting context may still be useful, e.g., as an operand to
456 * @poly1305_concat@.
457 */
458
459void poly1305_macinit(poly1305_ctx *ctx,
460 const poly1305_key *key, const void *iv)
461{
462 const octet *s = iv;
463#if POLY1305_IMPL == 26
464 uint32 s0, s1, s2, s3;
465#else
466 unsigned i;
467#endif
468
469#if POLY1305_IMPL == 26
470 if (s) {
471 s0 = LOAD32_L(s + 0); s1 = LOAD32_L(s + 4);
472 s2 = LOAD32_L(s + 8); s3 = LOAD32_L(s + 12);
473 ctx->u.p26.s0 = P26W0(s); ctx->u.p26.s1 = P26W1(s);
474 ctx->u.p26.s2 = P26W2(s); ctx->u.p26.s3 = P26W3(s);
475 ctx->u.p26.s4 = P26W4(s);
476 }
477 ctx->u.p26.h[0] = ctx->u.p26.h[1] = ctx->u.p26.h[2] =
478 ctx->u.p26.h[3] = ctx->u.p26.h[4] = 0;
479#else
480 if (s) load_p11(ctx->u.p11.s, s);
481 for (i = 0; i < 12; i++) ctx->u.p11.h[i] = 0;
482#endif
483 ctx->k = *key;
484 ctx->nbuf = 0;
485 ctx->count = 0;
486}
487
488/* --- @poly1305_copy@ --- *
489 *
490 * Arguments: @poly1305_ctx *to@ = destination context
491 * @const poly1305_ctx *from@ = source context
492 *
493 * Returns: ---
494 *
495 * Use: Duplicates a Poly1305 MAC context. The destination need not
496 * have been initialized. Both contexts can be used
497 * independently afterwards.
498 */
499
500void poly1305_copy(poly1305_ctx *ctx, const poly1305_ctx *from)
501 { *ctx = *from; }
502
503/* --- @poly1305_hash@ --- *
504 *
505 * Arguments: @poly1305_ctx *ctx@ = MAC context to update
506 * @const void *p@ = pointer to message data
507 * @size_t sz@ = length of message data
508 *
509 * Returns: ---
510 *
511 * Use: Processes a chunk of message. The message pieces may have
512 * arbitrary lengths, and may be empty.
513 */
514
515static void update_full(poly1305_ctx *ctx, const octet *p)
516{
517 felt t;
518#if POLY1305_IMPL == 26
519 uint32
520 m0 = LOAD32_L(p + 0), m1 = LOAD32_L(p + 4),
521 m2 = LOAD32_L(p + 8), m3 = LOAD32_L(p + 12);
522
523 t[0] = ctx->u.p26.h[0] + P26W0(m);
524 t[1] = ctx->u.p26.h[1] + P26W1(m);
525 t[2] = ctx->u.p26.h[2] + P26W2(m);
526 t[3] = ctx->u.p26.h[3] + P26W3(m);
527 t[4] = ctx->u.p26.h[4] + P26W4(m) + 0x01000000;
528#else
529 unsigned i;
530
531 load_p11(t, p); t[11] += 0x100;
532 for (i = 0; i < 12; i++) t[i] += ctx->u.p11.h[i];
533#endif
534
535 mul_r(ctx, ctx->u.P.h, t);
536 ctx->count++;
537}
538
539void poly1305_hash(poly1305_ctx *ctx, const void *p, size_t sz)
540{
541 const octet *pp = p;
542 size_t n;
543
544 if (ctx->nbuf) {
545 if (sz < 16 - ctx->nbuf) {
546 memcpy(ctx->buf + ctx->nbuf, p, sz);
547 ctx->nbuf += sz;
548 return;
549 }
550 n = 16 - ctx->nbuf;
551 memcpy(ctx->buf + ctx->nbuf, pp, n);
552 update_full(ctx, ctx->buf);
553 pp += n; sz -= n;
554 }
555 while (sz >= 16) {
556 update_full(ctx, pp);
557 pp += 16; sz -= 16;
558 }
559 if (sz) memcpy(ctx->buf, pp, sz);
560 ctx->nbuf = sz;
561}
562
563/* --- @poly1305_flush@ --- *
564 *
565 * Arguments: @poly1305_ctx *ctx@ = MAC context to flush
566 *
567 * Returns: ---
568 *
569 * Use: Forces any buffered message data in the context to be
570 * processed. This has no effect if the message processed so
571 * far is a whole number of blocks. Flushing is performed
572 * automatically by @poly1305_done@, but it may be necessary to
573 * force it by hand when using @poly1305_concat@.
574 *
575 * Flushing a partial block has an observable effect on the
576 * computation: the resulting state is (with high probability)
577 * dissimilar to any state reachable with a message which is a
578 * whole number of blocks long.
579 */
580
581void poly1305_flush(poly1305_ctx *ctx)
582{
583 felt t;
584#if POLY1305_IMPL == 26
585 uint32 m0, m1, m2, m3;
586#else
587 unsigned i;
588#endif
589
590 if (!ctx->nbuf) return;
591 ctx->buf[ctx->nbuf++] = 1; memset(ctx->buf + ctx->nbuf, 0, 16 - ctx->nbuf);
592#if POLY1305_IMPL == 26
593 m0 = LOAD32_L(ctx->buf + 0); m1 = LOAD32_L(ctx->buf + 4);
594 m2 = LOAD32_L(ctx->buf + 8); m3 = LOAD32_L(ctx->buf + 12);
595
596 t[0] = ctx->u.p26.h[0] + P26W0(m);
597 t[1] = ctx->u.p26.h[1] + P26W1(m);
598 t[2] = ctx->u.p26.h[2] + P26W2(m);
599 t[3] = ctx->u.p26.h[3] + P26W3(m);
600 t[4] = ctx->u.p26.h[4] + P26W4(m);
601#else
602 load_p11(t, ctx->buf);
603 for (i = 0; i < 12; i++) t[i] += ctx->u.p11.h[i];
604#endif
605
606 mul_r(ctx, ctx->u.P.h, t);
607 ctx->count++;
608 ctx->nbuf = 0;
609}
610
611/* --- @poly1305_concat@ --- *
612 *
613 * Arguments: @poly1305_ctx *ctx@ = destination context
614 * @const poly1305_ctx *prefix, *suffix@ = two operand contexts
615 *
616 * Returns: ---
617 *
618 * Use: The two operand contexts @prefix@ and @suffix@ represent
619 * processing of two messages %$m$% and %$m'$%; the effect is to
620 * set @ctx@ to the state corresponding to their concatenation
621 * %$m \cat m'$%.
622 *
623 * All three contexts must have been initialized using the same
624 * key value (though not necessarily from the same key
625 * structure). The mask values associated with the input
626 * contexts are irrelevant. The @prefix@ message %$m$% must be
627 * a whole number of blocks long: this can be arranged by
628 * flushing the context. The @suffix@ message need not be a
629 * whole number of blocks long. All of the contexts remain
630 * operational and can be used independently afterwards.
631 */
632
633void poly1305_concat(poly1305_ctx *ctx,
634 const poly1305_ctx *prefix, const poly1305_ctx *suffix)
635{
636 /* Assume that lengths are public, so it's safe to behave conditionally on
637 * the bits of ctx->count.
638 */
639 unsigned long n;
640 unsigned i;
641 felt x;
642#if POLY1305_IMPL == 26
643 uint32 x0, x1, x2, x3, x4, y0, y1, y2, y3, y4;
644#else
645 uint32 y[12];
646#endif
647
648 /* We can only concatenate if the prefix is block-aligned. */
649 assert(!prefix->nbuf);
650
651 /* The hash for a message m = m_{k-1} m_{k-2} ... m_1 m_0 is h_r(m) =
652 * SUM_{0<=i<k} m_i r^{i+1}. If we have two messages, m, m', of lengths k
653 * and k' blocks respectively, then
654 *
655 * h_r(m || m') = SUM_{0<=i<k} m_i r^{k'+i+1} +
656 * SUM_{0<=i<k'} m'_i r^{i+1}
657 * = r^{k'} h_r(m) + h_r(m')
658 *
659 * This is simple left-to-right square-and-multiply exponentiation.
660 */
661 n = suffix->count;
662 x[0] = 1;
663#if POLY1305_IMPL == 26
664 x[1] = x[2] = x[3] = x[4] = 0;
665#else
666 for (i = 1; i < 12; i++) x[i] = 0;
667#endif
ac082cc9 668#define BIT (1ul << (ULONG_BITS - 1))
57496a50
MW
669 if (n) {
670 i = ULONG_BITS;
671 while (!(n & BIT)) { n <<= 1; i--; }
672 mul_r(prefix, x, x); n <<= 1; i--;
673 while (i--) { sqr(x, x); if (n & BIT) mul_r(prefix, x, x); n <<= 1; }
674 }
675#undef BIT
676 mul(x, prefix->u.P.h, x);
677
678 /* Add on the suffix hash. */
679#if POLY1305_IMPL == 26
680 /* We're going to add the two hashes elementwise. Both h' = h_r(m') and
681 * x = r^{k'} h_r(m) are bounded above by 2^27, so the sum will be bounded
682 * by 2^28; but this is too large to leave in the accumulator. (Strictly,
683 * we could get away with it, but the caller can in theory chain an
684 * arbitrary number of concatenations and expect us to cope, and we'd
685 * definitely overflow eventually.) So we reduce. Since the excess is so
686 * small, a single round of `CARRY_REDUCE' is enough.
687 */
688 x0 = x[0] + suffix->u.p26.h[0]; x1 = x[1] + suffix->u.p26.h[1];
689 x2 = x[2] + suffix->u.p26.h[2]; x3 = x[3] + suffix->u.p26.h[3];
690 x4 = x[4] + suffix->u.p26.h[4];
691 CARRY_REDUCE(y, x);
692 ctx->u.p26.h[0] = y0; ctx->u.p26.h[1] = y1; ctx->u.p26.h[2] = y2;
693 ctx->u.p26.h[3] = y3; ctx->u.p26.h[4] = y4;
694#else
695 /* We'll add the two hashes elementwise and have to reduce again. The
696 * numbers are different, but the reasoning is basically the same.
697 */
698 for (i = 0; i < 12; i++) y[i] = x[i] + suffix->u.p11.h[i];
699 carry_reduce(y);
700 for (i = 0; i < 12; i++) ctx->u.p11.h[i] = y[i];
701#endif
702
703 /* Copy the remaining pieces of the context to set up the result. */
704 if (ctx != suffix) {
705 memcpy(ctx->buf, suffix->buf, suffix->nbuf);
706 ctx->nbuf = suffix->nbuf;
707 }
708 ctx->count = prefix->count + suffix->count;
709}
710
711/* --- @poly1305_done@ --- *
712 *
713 * Arguments: @poly1305_ctx *ctx@ = MAC context to finish
714 * @void *h@ = buffer to write the tag to
715 *
716 * Returns: ---
717 *
718 * Use: Completes a Poly1305 MAC tag computation.
719 */
720
721void poly1305_done(poly1305_ctx *ctx, void *h)
722{
723 octet *p = h;
724
725#if POLY1305_IMPL == 26
726 uint32 m_sub, t, c;
727 uint32 h0, h1, h2, h3, h4, hh0, hh1, hh2, hh3, hh4;
728
729 /* If there's anything left over in the buffer, pad it to form a final
730 * coefficient and update the evaluation one last time.
731 */
732 poly1305_flush(ctx);
733
734 /* Collect the final hash state. */
735 h0 = ctx->u.p26.h[0];
736 h1 = ctx->u.p26.h[1];
737 h2 = ctx->u.p26.h[2];
738 h3 = ctx->u.p26.h[3];
739 h4 = ctx->u.p26.h[4];
740
741 /* Reduce the final value mod 2^130 - 5. First pass: set h <- h +
742 * 5 floor(h/2^130). After this, the low pieces of h will be normalized:
743 * 0 <= h_i < 2^26 for 0 <= i < 4; and 0 <= h_4 < 2^26 + 1. In the
744 * (highly unlikely) event that h_4 >= 2^26, set c and truncate to 130
745 * bits.
746 */
747 c = h4 >> 26; h4 &= M26;
748 h0 += 5*c; c = h0 >> 26; h0 &= M26;
749 h1 += c; c = h1 >> 26; h1 &= M26;
750 h2 += c; c = h2 >> 26; h2 &= M26;
751 h3 += c; c = h3 >> 26; h3 &= M26;
752 h4 += c; c = h4 >> 26; h4 &= M26;
753
754 /* Calculate h' = h - (2^130 - 5). If h' >= 0 then t ends up 1; otherwise
755 * it's zero.
756 */
757 t = h0 + 5; hh0 = t&M26; t >>= 26;
758 t += h1; hh1 = t&M26; t >>= 26;
759 t += h2; hh2 = t&M26; t >>= 26;
760 t += h3; hh3 = t&M26; t >>= 26;
761 t += h4; hh4 = t&M26; t >>= 26;
762
763 /* Keep the subtraction result above if t or c is set. */
764 m_sub = -(t | c);
765 h0 = (hh0&m_sub) | (h0&~m_sub);
766 h1 = (hh1&m_sub) | (h1&~m_sub);
767 h2 = (hh2&m_sub) | (h2&~m_sub);
768 h3 = (hh3&m_sub) | (h3&~m_sub);
769 h4 = (hh4&m_sub) | (h4&~m_sub);
770
771 /* Add the mask onto the hash result. */
772 t = h0 + ctx->u.p26.s0; h0 = t&M26; t >>= 26;
773 t += h1 + ctx->u.p26.s1; h1 = t&M26; t >>= 26;
774 t += h2 + ctx->u.p26.s2; h2 = t&M26; t >>= 26;
775 t += h3 + ctx->u.p26.s3; h3 = t&M26; t >>= 26;
776 t += h4 + ctx->u.p26.s4; h4 = t&M26; t >>= 26;
777
778 /* Convert this mess back into 32-bit words. We lose the top two bits,
779 * but that's fine.
780 */
781 h0 = (h0 >> 0) | ((h1 & 0x0000003f) << 26);
782 h1 = (h1 >> 6) | ((h2 & 0x00000fff) << 20);
783 h2 = (h2 >> 12) | ((h3 & 0x0003ffff) << 14);
784 h3 = (h3 >> 18) | ((h4 & 0x00ffffff) << 8);
785
786 /* All done. */
787 STORE32_L(p + 0, h0); STORE32_L(p + 4, h1);
788 STORE32_L(p + 8, h2); STORE32_L(p + 12, h3);
789#else
790 uint16 hh[12], hi[12], c, t, m_sub;
791 uint32 a;
792 unsigned i, j, n;
793
794 /* If there's anything left over in the buffer, pad it to form a final
795 * coefficient and update the evaluation one last time.
796 */
797 poly1305_flush(ctx);
798
799 /* Collect the final hash state. */
800 for (i = 0; i < 12; i++) hh[i] = ctx->u.p11.h[i];
801
802 /* Reduce the final value mod 2^130 - 5. First pass: set h <- h +
803 * 5 floor(h/2^130). After this, the low pieces of h will be normalized:
804 * 0 <= h_i < 2^{w_i} for 0 <= i < 11; and 0 <= h_{11} < 2^10 + 1. In the
805 * (highly unlikely) event that h_{11} >= 2^10, set c and truncate to 130
806 * bits.
807 */
808 c = 5*(hh[11] >> 10); hh[11] &= M10;
809 for (i = 0; i < 12; i++) {
810 if (i == 5 || i == 11) { c += hh[i]; hh[i] = c&M10; c >>= 10; }
811 else { c += hh[i]; hh[i] = c&M11; c >>= 11; }
812 }
813
814 /* Calculate h' = h - (2^130 - 5). If h' >= 0 then t ends up 1; otherwise
815 * it's zero.
816 */
817 for (i = 0, t = 5; i < 12; i++) {
818 t += hh[i];
819 if (i == 5 || i == 11) { hi[i] = t&M10; t >>= 10; }
820 else { hi[i] = t&M11; t >>= 11; }
821 }
822
823 /* Keep the subtraction result above if t or c is set. */
824 m_sub = -(t | c);
825 for (i = 0; i < 12; i++) hh[i] = (hi[i]&m_sub) | (hh[i]&~m_sub);
826
827 /* Add the mask onto the hash result. */
828 for (i = 0, t = 0; i < 12; i++) {
829 t += hh[i] + ctx->u.p11.s[i];
830 if (i == 5 || i == 11) { hh[i] = t&M10; t >>= 10; }
831 else { hh[i] = t&M11; t >>= 11; }
832 }
833
834 /* Convert this mess back into bytes. We lose the top two bits, but that's
835 * fine.
836 */
837 for (i = j = n = 0, a = 0; i < 16; i++) {
838 if (n < 8) {
839 a |= hh[j] << n;
840 n += (j == 5 || j == 11) ? 10 : 11;
841 j++;
842 }
843 p[i] = a&0xff; a >>= 8; n -= 8;
844 }
845
846#endif
847}
848
849/*----- Test rig ----------------------------------------------------------*/
850
851#ifdef TEST_RIG
852
853#include <mLib/testrig.h>
854
855static int vrf_hash(dstr v[])
856{
857 poly1305_key k;
858 poly1305_ctx ctx;
859 dstr t = DSTR_INIT;
860 unsigned i, j;
861
862 if (v[0].len != 16) { fprintf(stderr, "bad key length\n"); exit(2); }
863 if (v[1].len != 16) { fprintf(stderr, "bad mask length\n"); exit(2); }
864 if (v[3].len != 16) { fprintf(stderr, "bad tag length\n"); exit(2); }
865 dstr_ensure(&t, 16); t.len = 16;
866
867 poly1305_keyinit(&k, v[0].buf, v[0].len);
868 for (i = 0; i < v[2].len; i++) {
869 for (j = i; j < v[2].len; j++) {
870 poly1305_macinit(&ctx, &k, v[1].buf);
871 poly1305_hash(&ctx, v[2].buf, i);
872 poly1305_hash(&ctx, v[2].buf + i, j - i);
873 poly1305_hash(&ctx, v[2].buf + j, v[2].len - j);
874 poly1305_done(&ctx, t.buf);
875 if (memcmp(t.buf, v[3].buf, 16) != 0) {
876 fprintf(stderr, "failed...");
877 fprintf(stderr, "\n\tkey = "); type_hex.dump(&v[0], stderr);
878 fprintf(stderr, "\n\tmask = "); type_hex.dump(&v[1], stderr);
879 fprintf(stderr, "\n\tmsg = "); type_hex.dump(&v[2], stderr);
880 fprintf(stderr, "\n\texp = "); type_hex.dump(&v[3], stderr);
881 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&t, stderr);
882 fprintf(stderr, "\n\tsplits = 0 .. %u .. %u .. %lu\n",
883 i, j, (unsigned long)v[1].len);
884 return (0);
885 }
886 }
887 }
888 return (1);
889}
890
891static int vrf_cat(dstr v[])
892{
893 poly1305_key k;
894 poly1305_ctx ctx, cc[3];
895 dstr t = DSTR_INIT;
896 unsigned i;
897 int ok = 1;
898
899 if (v[0].len != 16) { fprintf(stderr, "bad key length\n"); exit(2); }
900 if (v[1].len != 16) { fprintf(stderr, "bad mask length\n"); exit(2); }
901 if (v[5].len != 16) { fprintf(stderr, "bad tag length\n"); exit(2); }
902 dstr_ensure(&t, 16); t.len = 16;
903
904 poly1305_keyinit(&k, v[0].buf, v[0].len);
905 poly1305_macinit(&ctx, &k, v[1].buf);
906 for (i = 0; i < 3; i++) {
907 poly1305_macinit(&cc[i], &k, 0);
908 poly1305_hash(&cc[i], v[i + 2].buf, v[i + 2].len);
909 }
910 for (i = 0; i < 2; i++) {
911 if (!i) {
912 poly1305_concat(&ctx, &cc[1], &cc[2]);
913 poly1305_concat(&ctx, &cc[0], &ctx);
914 } else {
915 poly1305_concat(&ctx, &cc[0], &cc[1]);
916 poly1305_concat(&ctx, &ctx, &cc[2]);
917 }
918 poly1305_done(&ctx, t.buf);
919 if (memcmp(t.buf, v[5].buf, 16) != 0) {
920 fprintf(stderr, "failed...");
921 fprintf(stderr, "\n\tkey = "); type_hex.dump(&v[0], stderr);
922 fprintf(stderr, "\n\tmask = "); type_hex.dump(&v[1], stderr);
923 fprintf(stderr, "\n\tmsg[0] = "); type_hex.dump(&v[2], stderr);
924 fprintf(stderr, "\n\tmsg[1] = "); type_hex.dump(&v[3], stderr);
925 fprintf(stderr, "\n\tmsg[2] = "); type_hex.dump(&v[4], stderr);
926 fprintf(stderr, "\n\texp = "); type_hex.dump(&v[5], stderr);
927 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&t, stderr);
928 fprintf(stderr, "\n\tassoc = %s\n",
929 !i ? "msg[0] || (msg[1] || msg[2])" :
930 "(msg[0] || msg[1]) || msg[2]");
931 ok = 0;
932 }
933 }
934 return (ok);
935}
936
937static const struct test_chunk tests[] = {
938 { "poly1305-hash", vrf_hash,
939 { &type_hex, &type_hex, &type_hex, &type_hex } },
940 { "poly1305-cat", vrf_cat,
941 { &type_hex, &type_hex, &type_hex, &type_hex, &type_hex, &type_hex } },
942 { 0, 0, { 0 } }
943};
944
945int main(int argc, char *argv[])
946{
947 test_run(argc, argv, tests, SRCDIR "/t/poly1305");
948 return (0);
949}
950
951#endif
952
953/*----- That's all, folks -------------------------------------------------*/