symm/stub.h.in: Fix bogus characters in the include guard macro name.
[catacomb] / symm / salsa20.c
CommitLineData
194e93f2
MW
1/* -*-c-*-
2 *
3 * Salsa20 stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
0a847b11
MW
8/*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
194e93f2
MW
28/*----- Header files ------------------------------------------------------*/
29
e10e6494
MW
30#include "config.h"
31
194e93f2
MW
32#include <stdarg.h>
33
34#include <mLib/bits.h>
35
36#include "arena.h"
e10e6494 37#include "dispatch.h"
194e93f2
MW
38#include "gcipher.h"
39#include "grand.h"
40#include "keysz.h"
41#include "paranoia.h"
42#include "salsa20.h"
43#include "salsa20-core.h"
44
45/*----- Global variables --------------------------------------------------*/
46
47const octet salsa20_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
48
49/*----- The Salsa20 core function and utilities ---------------------------*/
50
51/* --- @core@ --- *
52 *
53 * Arguments: @unsigned r@ = number of rounds
54 * @const salsa20_matrix src@ = input matrix
55 * @salsa20_matrix dest@ = where to put the output
56 *
57 * Returns: ---
58 *
59 *
60 * Use: Apply the Salsa20/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
63 */
64
8a1aa284
MW
65CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const salsa20_matrix src, salsa20_matrix dest),
67 (r, src, dest), pick_core, simple_core);
e10e6494
MW
68
69static void simple_core(unsigned r, const salsa20_matrix src,
70 salsa20_matrix dest)
194e93f2
MW
71 { SALSA20_nR(dest, src, r); SALSA20_FFWD(dest, src); }
72
0f23f75f
MW
73#if CPUFAM_X86 || CPUFAM_AMD64
74extern core__functype salsa20_core_x86ish_sse2;
e10e6494
MW
75#endif
76
704d59c8
MW
77#if CPUFAM_ARMEL
78extern core__functype salsa20_core_arm_neon;
79#endif
80
e10e6494
MW
81static core__functype *pick_core(void)
82{
0f23f75f
MW
83#if CPUFAM_X86 || CPUFAM_AMD64
84 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_sse2,
fac645f7 85 cpu_feature_p(CPUFEAT_X86_SSE2));
e10e6494 86#endif
704d59c8
MW
87#if CPUFAM_ARMEL
88 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm_neon,
89 cpu_feature_p(CPUFEAT_ARM_NEON));
90#endif
fac645f7 91 DISPATCH_PICK_FALLBACK(salsa20_core, simple_core);
e10e6494
MW
92}
93
194e93f2
MW
94/* --- @populate@ --- *
95 *
96 * Arguments: @salsa20_matrix a@ = a matrix to fill in
97 * @const void *key@ = pointer to key material
98 * @size_t ksz@ = size of key
99 *
100 * Returns: ---
101 *
102 * Use: Fills in a Salsa20 matrix from the key, setting the
103 * appropriate constants according to the key length. The nonce
104 * and position words are left uninitialized.
105 */
106
107static void populate(salsa20_matrix a, const void *key, size_t ksz)
108{
109 const octet *k = key;
110
111 KSZ_ASSERT(salsa20, ksz);
112
a4c2e267
MW
113 /* Here's the pattern of key, constant, nonce, and counter pieces in the
114 * matrix, before and after our permutation.
115 *
116 * [ C0 K0 K1 K2 ] [ C0 C1 C2 C3 ]
117 * [ K3 C1 N0 N1 ] --> [ K3 T1 K7 K2 ]
118 * [ T0 T1 C2 K4 ] [ T0 K6 K1 N1 ]
119 * [ K5 K6 K7 C3 ] [ K5 K0 N0 K4 ]
120 */
121
122 a[13] = LOAD32_L(k + 0);
123 a[10] = LOAD32_L(k + 4);
194e93f2 124 if (ksz == 10) {
a4c2e267 125 a[ 7] = LOAD16_L(k + 8);
194e93f2
MW
126 a[ 4] = 0;
127 } else {
a4c2e267 128 a[ 7] = LOAD32_L(k + 8);
194e93f2
MW
129 a[ 4] = LOAD32_L(k + 12);
130 }
131 if (ksz <= 16) {
a4c2e267
MW
132 a[15] = a[13];
133 a[12] = a[10];
134 a[ 9] = a[ 7];
135 a[ 6] = a[ 4];
194e93f2 136 a[ 0] = SALSA20_A128;
a4c2e267
MW
137 a[ 1] = SALSA20_B128;
138 a[ 2] = ksz == 10 ? SALSA20_C80 : SALSA20_C128;
139 a[ 3] = SALSA20_D128;
194e93f2 140 } else {
a4c2e267 141 a[15] = LOAD32_L(k + 16);
194e93f2 142 a[12] = LOAD32_L(k + 20);
a4c2e267
MW
143 a[ 9] = LOAD32_L(k + 24);
144 a[ 6] = LOAD32_L(k + 28);
194e93f2 145 a[ 0] = SALSA20_A256;
a4c2e267
MW
146 a[ 1] = SALSA20_B256;
147 a[ 2] = SALSA20_C256;
148 a[ 3] = SALSA20_D256;
194e93f2
MW
149 }
150}
151
152/*----- Salsa20 implementation --------------------------------------------*/
153
154/* --- @salsa20_init@ --- *
155 *
156 * Arguments: @salsa20_ctx *ctx@ = context to fill in
157 * @const void *key@ = pointer to key material
158 * @size_t ksz@ = size of key (either 32 or 16)
159 * @const void *nonce@ = initial nonce, or null
160 *
161 * Returns: ---
162 *
163 * Use: Initializes a Salsa20 context ready for use.
164 */
165
166void salsa20_init(salsa20_ctx *ctx, const void *key, size_t ksz,
167 const void *nonce)
168{
169 static const octet zerononce[SALSA20_NONCESZ];
170
171 populate(ctx->a, key, ksz);
172 salsa20_setnonce(ctx, nonce ? nonce : zerononce);
173}
174
175/* --- @salsa20_setnonce@ --- *
176 *
177 * Arguments: @salsa20_ctx *ctx@ = pointer to context
178 * @const void *nonce@ = the nonce (@SALSA20_NONCESZ@ bytes)
179 *
180 * Returns: ---
181 *
182 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
183 * different message. The stream position is reset to zero (see
184 * @salsa20_seek@ etc.).
185 */
186
187void salsa20_setnonce(salsa20_ctx *ctx, const void *nonce)
188{
189 const octet *n = nonce;
190
a4c2e267
MW
191 ctx->a[14] = LOAD32_L(n + 0);
192 ctx->a[11] = LOAD32_L(n + 4);
194e93f2
MW
193 salsa20_seek(ctx, 0);
194}
195
196/* --- @salsa20_seek@, @salsa20_seeku64@ --- *
197 *
198 * Arguments: @salsa20_ctx *ctx@ = pointer to context
199 * @unsigned long i@, @kludge64 i@ = new position to set
200 *
201 * Returns: ---
202 *
203 * Use: Sets a new stream position, in units of Salsa20 output
204 * blocks, which are @SALSA20_OUTSZ@ bytes each. Byte
205 * granularity can be achieved by calling @salsa20R_encrypt@
206 * appropriately.
207 */
208
209void salsa20_seek(salsa20_ctx *ctx, unsigned long i)
210 { kludge64 ii; ASSIGN64(ii, i); salsa20_seeku64(ctx, ii); }
211
212void salsa20_seeku64(salsa20_ctx *ctx, kludge64 i)
213{
a4c2e267 214 ctx->a[8] = LO64(i); ctx->a[5] = HI64(i);
194e93f2
MW
215 ctx->bufi = SALSA20_OUTSZ;
216}
217
218/* --- @salsa20_tell@, @salsa20_tellu64@ --- *
219 *
220 * Arguments: @salsa20_ctx *ctx@ = pointer to context
221 *
222 * Returns: The current position in the output stream, in blocks,
223 * rounding upwards.
224 */
225
226unsigned long salsa20_tell(salsa20_ctx *ctx)
227 { kludge64 i = salsa20_tellu64(ctx); return (GET64(unsigned long, i)); }
228
229kludge64 salsa20_tellu64(salsa20_ctx *ctx)
a4c2e267 230 { kludge64 i; SET64(i, ctx->a[5], ctx->a[8]); return (i); }
194e93f2
MW
231
232/* --- @salsa20{,12,8}_encrypt@ --- *
233 *
234 * Arguments: @salsa20_ctx *ctx@ = pointer to context
235 * @const void *src@ = source buffer (or null)
236 * @void *dest@ = destination buffer (or null)
237 * @size_t sz@ = size of the buffers
238 *
239 * Returns: ---
240 *
241 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
242 * Salsa20 works by XORing plaintext with a keystream, so
243 * encryption and decryption are the same operation. If @dest@
244 * is null then ignore @src@ and skip @sz@ bytes of the
245 * keystream. If @src@ is null, then just write the keystream
246 * to @dest@.
247 */
248
249#define SALSA20_ENCRYPT(r, ctx, src, dest, sz) \
250 SALSA20_DECOR(salsa20, r, _encrypt)(ctx, src, dest, sz)
251#define DEFENCRYPT(r) \
252 void SALSA20_ENCRYPT(r, salsa20_ctx *ctx, const void *src, \
253 void *dest, size_t sz) \
254 { \
255 salsa20_matrix b; \
256 const octet *s = src; \
257 octet *d = dest; \
258 size_t n; \
259 kludge64 pos, delta; \
260 \
261 SALSA20_OUTBUF(ctx, d, s, sz); \
262 if (!sz) return; \
263 \
264 if (!dest) { \
265 n = sz/SALSA20_OUTSZ; \
266 pos = salsa20_tellu64(ctx); \
267 ASSIGN64(delta, n); \
268 ADD64(pos, pos, delta); \
269 salsa20_seeku64(ctx, pos); \
270 sz = sz%SALSA20_OUTSZ; \
271 } else if (!src) { \
272 while (sz >= SALSA20_OUTSZ) { \
273 core(r, ctx->a, b); \
274 SALSA20_STEP(ctx->a); \
275 SALSA20_GENFULL(b, d); \
276 sz -= SALSA20_OUTSZ; \
277 } \
278 } else { \
279 while (sz >= SALSA20_OUTSZ) { \
280 core(r, ctx->a, b); \
281 SALSA20_STEP(ctx->a); \
282 SALSA20_MIXFULL(b, d, s); \
283 sz -= SALSA20_OUTSZ; \
284 } \
285 } \
286 \
287 if (sz) { \
288 core(r, ctx->a, b); \
289 SALSA20_STEP(ctx->a); \
290 SALSA20_PREPBUF(ctx, b); \
291 SALSA20_OUTBUF(ctx, d, s, sz); \
292 assert(!sz); \
293 } \
294 }
295SALSA20_VARS(DEFENCRYPT)
296
297/*----- HSalsa20 implementation -------------------------------------------*/
298
299#define HSALSA20_RAW(r, ctx, src, dest) \
300 SALSA20_DECOR(hsalsa20, r, _raw)(ctx, src, dest)
301#define HSALSA20_PRF(r, ctx, src, dest) \
302 SALSA20_DECOR(hsalsa20, r, _prf)(ctx, src, dest)
303
304/* --- @hsalsa20{,12,8}_prf@ --- *
305 *
306 * Arguments: @salsa20_ctx *ctx@ = pointer to context
307 * @const void *src@ = the input (@HSALSA20_INSZ@ bytes)
308 * @void *dest@ = the output (@HSALSA20_OUTSZ@ bytes)
309 *
310 * Returns: ---
311 *
312 * Use: Apply the HSalsa20/r pseudorandom function to @src@, writing
313 * the result to @out@.
314 */
315
316#define DEFHSALSA20(r) \
317 static void HSALSA20_RAW(r, salsa20_matrix k, \
318 const uint32 *src, uint32 *dest) \
319 { \
320 salsa20_matrix a; \
321 int i; \
322 \
323 /* --- HSalsa20, computed from full Salsa20 --- * \
324 * \
325 * The security proof makes use of the fact that HSalsa20 (i.e., \
326 * without the final feedforward step) can be computed from full \
327 * Salsa20 using only knowledge of the non-secret input. I don't \
328 * want to compromise the performance of the main function by \
329 * making the feedforward step separate, but this operation is less \
330 * speed critical, so we do it the harder way. \
331 */ \
332 \
a4c2e267 333 for (i = 0; i < 4; i++) k[14 - 3*i] = src[i]; \
194e93f2 334 core(r, k, a); \
a4c2e267
MW
335 for (i = 0; i < 4; i++) dest[i] = a[5*i] - k[i]; \
336 for (i = 4; i < 8; i++) dest[i] = a[i + 2] - k[26 - 3*i]; \
194e93f2
MW
337 } \
338 \
339 void HSALSA20_PRF(r, salsa20_ctx *ctx, const void *src, void *dest) \
340 { \
341 const octet *s = src; \
342 octet *d = dest; \
343 uint32 in[4], out[8]; \
344 int i; \
345 \
346 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
347 HSALSA20_RAW(r, ctx->a, in, out); \
348 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
349 }
350SALSA20_VARS(DEFHSALSA20)
351
352/*----- XSalsa20 implementation -------------------------------------------*/
353
354/* --- Some convenient macros for naming functions --- *
355 *
356 * Because the crypto core is involved in XSalsa20/r's per-nonce setup, we
357 * need to take an interest in the number of rounds in most of the various
358 * functions, and it will probably help if we distinguish the context
359 * structures for the various versions.
360 */
361
362#define XSALSA20_CTX(r) SALSA20_DECOR(xsalsa20, r, _ctx)
363#define XSALSA20_INIT(r, ctx, k, ksz, n) \
364 SALSA20_DECOR(xsalsa20, r, _init)(ctx, k, ksz, n)
365#define XSALSA20_SETNONCE(r, ctx, n) \
366 SALSA20_DECOR(xsalsa20, r, _setnonce)(ctx, n)
367#define XSALSA20_SEEK(r, ctx, i) \
368 SALSA20_DECOR(xsalsa20, r, _seek)(ctx, i)
369#define XSALSA20_SEEKU64(r, ctx, i) \
370 SALSA20_DECOR(xsalsa20, r, _seeku64)(ctx, i)
371#define XSALSA20_TELL(r, ctx) \
372 SALSA20_DECOR(xsalsa20, r, _tell)(ctx)
373#define XSALSA20_TELLU64(r, ctx) \
374 SALSA20_DECOR(xsalsa20, r, _tellu64)(ctx)
375#define XSALSA20_ENCRYPT(r, ctx, src, dest, sz) \
376 SALSA20_DECOR(xsalsa20, r, _encrypt)(ctx, src, dest, sz)
377
378/* --- @xsalsa20{,12,8}_init@ --- *
379 *
380 * Arguments: @xsalsa20R_ctx *ctx@ = the context to fill in
381 * @const void *key@ = pointer to key material
382 * @size_t ksz@ = size of key (either 32 or 16)
383 * @const void *nonce@ = initial nonce, or null
384 *
385 * Returns: ---
386 *
387 * Use: Initializes an XSalsa20/r context ready for use.
388 *
389 * There is a different function for each number of rounds,
390 * unlike for plain Salsa20.
391 */
392
393#define DEFXINIT(r) \
394 void XSALSA20_INIT(r, XSALSA20_CTX(r) *ctx, \
395 const void *key, size_t ksz, const void *nonce) \
396 { \
397 static const octet zerononce[XSALSA20_NONCESZ]; \
398 \
399 populate(ctx->k, key, ksz); \
400 ctx->s.a[ 0] = SALSA20_A256; \
a4c2e267
MW
401 ctx->s.a[ 1] = SALSA20_B256; \
402 ctx->s.a[ 2] = SALSA20_C256; \
403 ctx->s.a[ 3] = SALSA20_D256; \
194e93f2
MW
404 XSALSA20_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
405 }
406SALSA20_VARS(DEFXINIT)
407
408/* --- @xsalsa20{,12,8}_setnonce@ --- *
409 *
410 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
411 * @const void *nonce@ = the nonce (@XSALSA20_NONCESZ@ bytes)
412 *
413 * Returns: ---
414 *
415 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
416 * different message. The stream position is reset to zero (see
417 * @salsa20_seek@ etc.).
418 *
419 * There is a different function for each number of rounds,
420 * unlike for plain Salsa20.
421 */
422
423#define DEFXNONCE(r) \
424 void XSALSA20_SETNONCE(r, XSALSA20_CTX(r) *ctx, const void *nonce) \
425 { \
426 const octet *n = nonce; \
427 uint32 in[4], out[8]; \
428 int i; \
429 \
430 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
431 HSALSA20_RAW(r, ctx->k, in, out); \
a4c2e267
MW
432 for (i = 0; i < 4; i++) ctx->s.a[13 - 3*i] = out[i]; \
433 for (i = 4; i < 8; i++) ctx->s.a[27 - 3*i] = out[i]; \
194e93f2
MW
434 salsa20_setnonce(&ctx->s, n + 16); \
435 }
436SALSA20_VARS(DEFXNONCE)
437
438/* --- @xsalsa20{,12,8}_seek@, @xsalsa20{,12,8}_seeku64@ --- *
439 *
440 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
441 * @unsigned long i@, @kludge64 i@ = new position to set
442 *
443 * Returns: ---
444 *
445 * Use: Sets a new stream position, in units of Salsa20 output
446 * blocks, which are @XSALSA20_OUTSZ@ bytes each. Byte
447 * granularity can be achieved by calling @xsalsa20R_encrypt@
448 * appropriately.
449 *
450 * There is a different function for each number of rounds,
451 * unlike for plain Salsa20, because the context structures are
452 * different.
453 */
454
455/* --- @xsalsa20{,12,8}_tell@, @xsalsa20{,12,8}_tellu64@ --- *
456 *
457 * Arguments: @salsa20_ctx *ctx@ = pointer to context
458 *
459 * Returns: The current position in the output stream, in blocks,
460 * rounding upwards.
461 *
462 * There is a different function for each number of rounds,
463 * unlike for plain Salsa20, because the context structures are
464 * different.
465 */
466
467/* --- @xsalsa20{,12,8}_encrypt@ --- *
468 *
469 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
470 * @const void *src@ = source buffer (or null)
471 * @void *dest@ = destination buffer (or null)
472 * @size_t sz@ = size of the buffers
473 *
474 * Returns: ---
475 *
476 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
477 * XSalsa20 works by XORing plaintext with a keystream, so
478 * encryption and decryption are the same operation. If @dest@
479 * is null then ignore @src@ and skip @sz@ bytes of the
480 * keystream. If @src@ is null, then just write the keystream
481 * to @dest@.
482 */
483
484#define DEFXPASSTHRU(r) \
485 void XSALSA20_SEEK(r, XSALSA20_CTX(r) *ctx, unsigned long i) \
486 { salsa20_seek(&ctx->s, i); } \
487 void XSALSA20_SEEKU64(r, XSALSA20_CTX(r) *ctx, kludge64 i) \
488 { salsa20_seeku64(&ctx->s, i); } \
489 unsigned long XSALSA20_TELL(r, XSALSA20_CTX(r) *ctx) \
490 { return salsa20_tell(&ctx->s); } \
491 kludge64 XSALSA20_TELLU64(r, XSALSA20_CTX(r) *ctx) \
492 { return salsa20_tellu64(&ctx->s); } \
493 void XSALSA20_ENCRYPT(r, XSALSA20_CTX(r) *ctx, \
494 const void *src, void *dest, size_t sz) \
495 { SALSA20_ENCRYPT(r, &ctx->s, src, dest, sz); }
496SALSA20_VARS(DEFXPASSTHRU)
497
498/*----- Generic cipher interface ------------------------------------------*/
499
500typedef struct gctx { gcipher c; salsa20_ctx ctx; } gctx;
501
502static void gsetiv(gcipher *c, const void *iv)
503 { gctx *g = (gctx *)c; salsa20_setnonce(&g->ctx, iv); }
504
505static void gdestroy(gcipher *c)
506 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
507
508#define DEFGCIPHER(r) \
509 \
510 static const gcipher_ops gops_##r; \
511 \
512 static gcipher *ginit_##r(const void *k, size_t sz) \
513 { \
514 gctx *g = S_CREATE(gctx); \
515 g->c.ops = &gops_##r; \
516 salsa20_init(&g->ctx, k, sz, 0); \
517 return (&g->c); \
518 } \
519 \
520 static void gencrypt_##r(gcipher *c, const void *s, \
521 void *t, size_t sz) \
522 { gctx *g = (gctx *)c; SALSA20_ENCRYPT(r, &g->ctx, s, t, sz); } \
523 \
524 static const gcipher_ops gops_##r = { \
525 &SALSA20_DECOR(salsa20, r, ), \
526 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
527 }; \
528 \
529 const gccipher SALSA20_DECOR(salsa20, r, ) = { \
530 SALSA20_NAME_##r, salsa20_keysz, \
531 SALSA20_NONCESZ, ginit_##r \
532 };
533
534SALSA20_VARS(DEFGCIPHER)
535
536#define DEFGXCIPHER(r) \
537 \
538 typedef struct { gcipher c; XSALSA20_CTX(r) ctx; } gxctx_##r; \
539 \
540 static void gxsetiv_##r(gcipher *c, const void *iv) \
541 { gxctx_##r *g = (gxctx_##r *)c; XSALSA20_SETNONCE(r, &g->ctx, iv); } \
542 \
543 static void gxdestroy_##r(gcipher *c) \
544 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
545 \
546 static const gcipher_ops gxops_##r; \
547 \
548 static gcipher *gxinit_##r(const void *k, size_t sz) \
549 { \
550 gxctx_##r *g = S_CREATE(gxctx_##r); \
551 g->c.ops = &gxops_##r; \
552 XSALSA20_INIT(r, &g->ctx, k, sz, 0); \
553 return (&g->c); \
554 } \
555 \
556 static void gxencrypt_##r(gcipher *c, const void *s, \
557 void *t, size_t sz) \
558 { \
559 gxctx_##r *g = (gxctx_##r *)c; \
560 XSALSA20_ENCRYPT(r, &g->ctx, s, t, sz); \
561 } \
562 \
563 static const gcipher_ops gxops_##r = { \
564 &SALSA20_DECOR(xsalsa20, r, ), \
565 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
566 }; \
567 \
568 const gccipher SALSA20_DECOR(xsalsa20, r, ) = { \
569 "x" SALSA20_NAME_##r, salsa20_keysz, \
570 XSALSA20_NONCESZ, gxinit_##r \
571 };
572
573SALSA20_VARS(DEFGXCIPHER)
574
575/*----- Generic random number generator interface -------------------------*/
576
577typedef struct grops {
578 size_t noncesz;
579 void (*seek)(void *, kludge64);
580 kludge64 (*tell)(void *);
581 void (*setnonce)(void *, const void *);
582 void (*generate)(void *, void *, size_t);
583} grops;
584
585typedef struct grbasectx {
586 grand r;
587 const grops *ops;
588} grbasectx;
589
590static int grmisc(grand *r, unsigned op, ...)
591{
592 octet buf[XSALSA20_NONCESZ];
593 grbasectx *g = (grbasectx *)r;
594 grand *rr;
595 const octet *p;
596 size_t sz;
597 uint32 i;
598 unsigned long ul;
599 kludge64 pos;
600 va_list ap;
601 int rc = 0;
602
603 va_start(ap, op);
604
605 switch (op) {
606 case GRAND_CHECK:
607 switch (va_arg(ap, unsigned)) {
608 case GRAND_CHECK:
609 case GRAND_SEEDINT:
610 case GRAND_SEEDUINT32:
611 case GRAND_SEEDBLOCK:
612 case GRAND_SEEDRAND:
613 case SALSA20_SEEK:
614 case SALSA20_SEEKU64:
615 case SALSA20_TELL:
616 case SALSA20_TELLU64:
617 rc = 1;
618 break;
619 default:
620 rc = 0;
621 break;
622 }
623 break;
624
625 case GRAND_SEEDINT:
626 i = va_arg(ap, unsigned); STORE32_L(buf, i);
627 memset(buf + 4, 0, g->ops->noncesz - 4);
628 g->ops->setnonce(g, buf);
629 break;
630 case GRAND_SEEDUINT32:
631 i = va_arg(ap, uint32); STORE32_L(buf, i);
632 memset(buf + 4, 0, g->ops->noncesz - 4);
633 g->ops->setnonce(g, buf);
634 break;
635 case GRAND_SEEDBLOCK:
636 p = va_arg(ap, const void *);
637 sz = va_arg(ap, size_t);
638 if (sz < g->ops->noncesz) {
639 memcpy(buf, p, sz);
640 memset(buf + sz, 0, g->ops->noncesz - sz);
641 p = buf;
642 }
643 g->ops->setnonce(g, p);
644 break;
645 case GRAND_SEEDRAND:
646 rr = va_arg(ap, grand *);
647 rr->ops->fill(rr, buf, g->ops->noncesz);
648 g->ops->setnonce(g, buf);
649 break;
650 case SALSA20_SEEK:
651 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
652 g->ops->seek(g, pos);
653 break;
654 case SALSA20_SEEKU64:
655 pos = va_arg(ap, kludge64);
656 g->ops->seek(g, pos);
657 break;
658 case SALSA20_TELL:
659 pos = g->ops->tell(g);
660 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
661 break;
662 case SALSA20_TELLU64:
663 *va_arg(ap, kludge64 *) = g->ops->tell(g);
664 break;
665 default:
666 GRAND_BADOP;
667 break;
668 }
669
670 return (rc);
671}
672
673static octet grbyte(grand *r)
674{
675 grbasectx *g = (grbasectx *)r;
676 octet o;
677 g->ops->generate(g, &o, 1);
678 return (o);
679}
680
681static uint32 grword(grand *r)
682{
683 grbasectx *g = (grbasectx *)r;
684 octet b[4];
685 g->ops->generate(g, b, sizeof(b));
686 return (LOAD32_L(b));
687}
688
689static void grfill(grand *r, void *p, size_t sz)
690{
691 grbasectx *g = (grbasectx *)r;
692 g->ops->generate(r, p, sz);
693}
694
695typedef struct grctx {
696 grbasectx r;
697 salsa20_ctx ctx;
698} grctx;
699
700static void gr_seek(void *r, kludge64 pos)
701 { grctx *g = r; salsa20_seeku64(&g->ctx, pos); }
702
703static kludge64 gr_tell(void *r)
704 { grctx *g = r; return (salsa20_tellu64(&g->ctx)); }
705
706static void gr_setnonce(void *r, const void *n)
707 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
708
709static void grdestroy(grand *r)
710 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
711
712#define DEFGRAND(rr) \
713 \
714 static void gr_generate_##rr(void *r, void *b, size_t sz) \
715 { grctx *g = r; SALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
716 \
717 static const grops grops_##rr = \
718 { SALSA20_NONCESZ, gr_seek, gr_tell, \
719 gr_setnonce, gr_generate_##rr }; \
720 \
721 static const grand_ops grops_rand_##rr = { \
722 SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
723 grmisc, grdestroy, grword, \
44ff6c11 724 grbyte, grword, grand_defaultrange, grfill \
194e93f2
MW
725 }; \
726 \
727 grand *SALSA20_DECOR(salsa20, rr, _rand) \
728 (const void *k, size_t ksz, const void *n) \
729 { \
f9fe9910 730 grctx *g = S_CREATE(grctx); \
194e93f2
MW
731 g->r.r.ops = &grops_rand_##rr; \
732 g->r.ops = &grops_##rr; \
733 salsa20_init(&g->ctx, k, ksz, n); \
734 return (&g->r.r); \
735 }
736SALSA20_VARS(DEFGRAND)
737
738#define DEFXGRAND(rr) \
739 \
740 typedef struct grxctx_##rr { \
741 grbasectx r; \
742 XSALSA20_CTX(rr) ctx; \
743 } grxctx_##rr; \
744 \
745 static void grx_seek_##rr(void *r, kludge64 pos) \
746 { grxctx_##rr *g = r; XSALSA20_SEEKU64(rr, &g->ctx, pos); } \
747 \
748 static kludge64 grx_tell_##rr(void *r) \
749 { grxctx_##rr *g = r; return (XSALSA20_TELLU64(rr, &g->ctx)); } \
750 \
751 static void grx_setnonce_##rr(void *r, const void *n) \
752 { grxctx_##rr *g = r; XSALSA20_SETNONCE(rr, &g->ctx, n); } \
753 \
754 static void grxdestroy_##rr(grand *r) \
755 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
756 \
757 static void grx_generate_##rr(void *r, void *b, size_t sz) \
758 { grxctx_##rr *g = r; XSALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
759 \
760 static const grops grxops_##rr = \
761 { XSALSA20_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
762 grx_setnonce_##rr, grx_generate_##rr }; \
763 \
764 static const grand_ops grxops_rand_##rr = { \
765 "x" SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
766 grmisc, grxdestroy_##rr, grword, \
44ff6c11 767 grbyte, grword, grand_defaultrange, grfill \
194e93f2
MW
768 }; \
769 \
770 grand *SALSA20_DECOR(xsalsa20, rr, _rand) \
771 (const void *k, size_t ksz, const void *n) \
772 { \
f9fe9910 773 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
194e93f2
MW
774 g->r.r.ops = &grxops_rand_##rr; \
775 g->r.ops = &grxops_##rr; \
776 XSALSA20_INIT(rr, &g->ctx, k, ksz, n); \
777 return (&g->r.r); \
778 }
779SALSA20_VARS(DEFXGRAND)
780
781/*----- Test rig ----------------------------------------------------------*/
782
783#ifdef TEST_RIG
784
785#include <stdio.h>
786#include <string.h>
787
788#include <mLib/quis.h>
789#include <mLib/testrig.h>
790
a4c2e267
MW
791static const int perm[] = {
792 0, 13, 10, 7,
793 4, 1, 14, 11,
794 8, 5, 2, 15,
795 12, 9, 6, 3
796};
797
194e93f2
MW
798#define DEFVCORE(r) \
799 static int v_core_##r(dstr *v) \
800 { \
801 salsa20_matrix a, b; \
802 dstr d = DSTR_INIT; \
a4c2e267 803 int i, j, n; \
194e93f2
MW
804 int ok = 1; \
805 \
806 DENSURE(&d, SALSA20_OUTSZ); d.len = SALSA20_OUTSZ; \
807 n = *(int *)v[0].buf; \
808 for (i = 0; i < SALSA20_OUTSZ/4; i++) \
a4c2e267 809 b[i] = LOAD32_L(v[1].buf + 4*i); \
194e93f2 810 for (i = 0; i < n; i++) { \
a4c2e267 811 for (j = 0; j < 16; j++) a[perm[j]] = b[j]; \
194e93f2
MW
812 core(r, a, b); \
813 memcpy(a, b, sizeof(a)); \
814 } \
a4c2e267 815 for (i = 0; i < SALSA20_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, b[i]); \
194e93f2
MW
816 \
817 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
818 ok = 0; \
819 printf("\nfail core:" \
820 "\n\titerations = %d" \
821 "\n\tin = ", n); \
822 type_hex.dump(&v[1], stdout); \
823 printf("\n\texpected = "); \
824 type_hex.dump(&v[2], stdout); \
825 printf("\n\tcalculated = "); \
826 type_hex.dump(&d, stdout); \
827 putchar('\n'); \
828 } \
829 \
830 dstr_destroy(&d); \
831 return (ok); \
832 }
833SALSA20_VARS(DEFVCORE)
834
835#define SALSA20_CTX(r) salsa20_ctx
836#define SALSA20_INIT(r, ctx, k, ksz, n) salsa20_init(ctx, k, ksz, n)
837#define SALSA20_SEEKU64(r, ctx, i) salsa20_seeku64(ctx, i)
838
839#define DEFxVENC(base, BASE, r) \
840 static int v_encrypt_##base##_##r(dstr *v) \
841 { \
842 BASE##_CTX(r) ctx; \
843 dstr d = DSTR_INIT; \
844 kludge64 pos; \
845 const octet *p, *p0; \
846 octet *q; \
847 size_t sz, sz0, step; \
848 unsigned long skip; \
849 int ok = 1; \
850 \
851 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
852 else { p0 = 0; sz0 = v[5].len; } \
853 DENSURE(&d, sz0); d.len = sz0; \
854 skip = *(unsigned long *)v[3].buf; \
855 \
856 step = 0; \
857 while (step < sz0 + skip) { \
858 step = step ? 3*step + 4 : 1; \
859 if (step > sz0 + skip) step = sz0 + skip; \
860 BASE##_INIT(r, &ctx, v[0].buf, v[0].len, v[1].buf); \
861 if (v[2].len) { \
862 LOAD64_(pos, v[2].buf); \
863 BASE##_SEEKU64(r, &ctx, pos); \
864 } \
865 \
866 for (sz = skip; sz >= step; sz -= step) \
867 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
868 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
869 for (p = p0, q = (octet *)d.buf, sz = sz0; \
870 sz >= step; \
871 sz -= step, q += step) { \
872 BASE##_ENCRYPT(r, &ctx, p, q, step); \
873 if (p) p += step; \
874 } \
875 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
876 \
877 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
878 ok = 0; \
879 printf("\nfail encrypt:" \
880 "\n\tstep = %lu" \
881 "\n\tkey = ", (unsigned long)step); \
882 type_hex.dump(&v[0], stdout); \
883 printf("\n\tnonce = "); \
884 type_hex.dump(&v[1], stdout); \
885 printf("\n\tposition = "); \
886 type_hex.dump(&v[2], stdout); \
887 printf("\n\tskip = %lu", skip); \
888 printf("\n\tmessage = "); \
889 type_hex.dump(&v[4], stdout); \
890 printf("\n\texpected = "); \
891 type_hex.dump(&v[5], stdout); \
892 printf("\n\tcalculated = "); \
893 type_hex.dump(&d, stdout); \
894 putchar('\n'); \
895 } \
896 } \
897 \
898 dstr_destroy(&d); \
899 return (ok); \
900 }
901#define DEFVENC(r) DEFxVENC(salsa20, SALSA20, r)
902#define DEFXVENC(r) DEFxVENC(xsalsa20, XSALSA20, r)
903SALSA20_VARS(DEFVENC)
904SALSA20_VARS(DEFXVENC)
905
906static test_chunk defs[] = {
907#define DEFxTAB(pre, base, r) \
908 { pre SALSA20_NAME_##r, v_encrypt_##base##_##r, \
909 { &type_hex, &type_hex, &type_hex, &type_ulong, \
910 &type_hex, &type_hex, 0 } },
911#define DEFTAB(r) \
912 { SALSA20_NAME_##r "-core", v_core_##r, \
913 { &type_int, &type_hex, &type_hex, 0 } }, \
914 DEFxTAB("", salsa20, r)
915#define DEFXTAB(r) DEFxTAB("x", xsalsa20, r)
916SALSA20_VARS(DEFTAB)
917SALSA20_VARS(DEFXTAB)
918 { 0, 0, { 0 } }
919};
920
921int main(int argc, char *argv[])
922{
923 test_run(argc, argv, defs, SRCDIR"/t/salsa20");
924 return (0);
925}
926
927#endif
928
929/*----- That's all, folks -------------------------------------------------*/