base/asm-common.h: Define `WORDSZ' appropriately for x86ish platforms.
[catacomb] / base / asm-common.h
CommitLineData
1a0c09c4
MW
1/// -*- mode: asm; asm-comment-char: ?/ -*-
2///
3/// Fancy SIMD implementation of Salsa20
4///
5/// (c) 2015 Straylight/Edgeware
6///
7
8///----- Licensing notice ---------------------------------------------------
9///
10/// This file is part of Catacomb.
11///
12/// Catacomb is free software; you can redistribute it and/or modify
13/// it under the terms of the GNU Library General Public License as
14/// published by the Free Software Foundation; either version 2 of the
15/// License, or (at your option) any later version.
16///
17/// Catacomb is distributed in the hope that it will be useful,
18/// but WITHOUT ANY WARRANTY; without even the implied warranty of
19/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20/// GNU Library General Public License for more details.
21///
22/// You should have received a copy of the GNU Library General Public
23/// License along with Catacomb; if not, write to the Free
24/// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25/// MA 02111-1307, USA.
26
27///--------------------------------------------------------------------------
28/// General definitions.
29
898f32b3
MW
30// Preprocessor hacks.
31#define STRINGY(x) _STRINGY(x, y)
32#define _STRINGY(x) #x
33#define GLUE(x, y) _GLUE(x, y)
34#define _GLUE(x, y) x##y
35#define _EMPTY
36
f8e509a9
MW
37// Some useful variables.
38 .L$_subsec = 0
39
40// Literal pools done the hard way.
41#define _LIT .text .L$_subsec + 1
42#define _ENDLIT .text .L$_subsec
6c54cbd3 43#define _LTORG .L$_subsec = .L$_subsec + 2; .text .L$_subsec
f8e509a9 44
645fcce0
MW
45// ELF section types.
46#if __ELF__
47# if CPUFAM_ARMEL
48# define _SECTTY(ty) %ty
49# else
50# define _SECTTY(ty) @ty
51# endif
52#endif
53
54// Section selection.
55#define TEXT .text .L$_subsec
56#if ABI_WIN
57# define RODATA .section .rdata, "dr"
58#elif __ELF__
59# define RODATA .section .rodata, "a", _SECTTY(progbits)
60#else
61# define RODATA TEXT
62#endif
63#define DATA .data
64
1a0c09c4
MW
65// Announcing an external function.
66#define FUNC(name) \
67 .globl F(name); \
68 TYPE_FUNC(name); \
8a1aa284 69 .macro ENDFUNC; _ENDFUNC(name); .endm; \
1a0c09c4
MW
70 FUNC_PREHOOK(name); \
71F(name): \
72 FUNC_POSTHOOK(name)
73
74// Marking the end of a function.
75#define _ENDFUNC(name) \
76 .purgem ENDFUNC; \
77 SIZE_OBJ(name); \
f8e509a9 78 ENDFUNC_HOOK(name); \
6c54cbd3 79 _LTORG
1a0c09c4 80
8ae4c946
MW
81// Make a helper function, if necessary.
82#define AUXFN(name) \
83 .ifndef .L$_auxfn_def.name; \
84 .text 7128; \
85 .macro _ENDAUXFN; _ENDAUXFN_TAIL(name); .endm; \
86 FUNC_PREHOOK(name); \
87name:
88#define _ENDAUXFN_TAIL(name) \
89 .purgem _ENDAUXFN; \
90 .text .L$_subsec; \
91 .L$_auxfn_def.name = 1
92#define ENDAUXFN _ENDAUXFN; .endif
93
1a0c09c4
MW
94///--------------------------------------------------------------------------
95/// ELF-specific hacking.
96
97#if __ELF__
98
99#if __PIC__ || __PIE__
100# define WANT_PIC 1
101#endif
102
103#define TYPE_FUNC(name) .type name, STT_FUNC
104
105#define SIZE_OBJ(name) .size name, . - name
106
107#endif
108
109///--------------------------------------------------------------------------
0f23f75f
MW
110/// Windows-specific hacking.
111
112#if ABI_WIN
1a0c09c4
MW
113
114#if CPUFAM_X86
0f23f75f
MW
115# define F(name) _##name
116#endif
117
118#endif
119
120///--------------------------------------------------------------------------
121/// x86- and amd64-specific hacking.
122///
123/// It's (slightly) easier to deal with both of these in one go.
124
125#if CPUFAM_X86 || CPUFAM_AMD64
1a0c09c4 126
2cb17e02
MW
127// Word size.
128#if CPUFAM_X86
129# define WORDSZ 4
130#endif
131#if CPUFAM_AMD64
132# define WORDSZ 8
133#endif
134
1a0c09c4
MW
135// Set the function hooks.
136#define FUNC_PREHOOK(_) .balign 16
137
f71dd54d
MW
138// On Windows, arrange to install stack-unwinding data.
139#if CPUFAM_AMD64 && ABI_WIN
140# define FUNC_POSTHOOK(name) .seh_proc name
141# define ENDFUNC_HOOK(_) .seh_endproc
142// Procedures are expected to invoke `.seh_setframe' if necessary, and
143// `.seh_pushreg' and friends, and `.seh_endprologue'.
144#endif
145
1a0c09c4
MW
146// Don't use the wretched AT&T syntax. It's festooned with pointless
147// punctuation, and all of the data movement is backwards. Ugh!
148 .intel_syntax noprefix
149
150// Call external subroutine at ADDR, possibly via PLT.
8a1aa284 151.macro callext addr
1a0c09c4
MW
152#if WANT_PIC
153 call \addr@PLT
154#else
155 call \addr
156#endif
8a1aa284 157.endm
1a0c09c4
MW
158
159// Do I need to arrange a spare GOT register?
160#if WANT_PIC && CPUFAM_X86
161# define NEED_GOT 1
162#endif
163#define GOTREG ebx // Not needed in AMD64 so don't care.
164
165// Maybe load GOT address into GOT.
8a1aa284 166.macro ldgot got=GOTREG
0f23f75f 167#if WANT_PIC && CPUFAM_X86
8ae4c946 168 AUXFN(_ldgot.\got)
1a0c09c4
MW
169 mov \got, [esp]
170 ret
8ae4c946
MW
171 ENDAUXFN
172 call _ldgot.\got
173 add \got, offset _GLOBAL_OFFSET_TABLE_
1a0c09c4 174#endif
8a1aa284 175.endm
1a0c09c4
MW
176
177// Load address of external symbol ADDR into REG, maybe using GOT.
8a1aa284 178.macro leaext reg, addr, got=GOTREG
1a0c09c4 179#if WANT_PIC
0f23f75f 180# if CPUFAM_X86
1a0c09c4 181 mov \reg, [\got + \addr@GOT]
0f23f75f
MW
182# endif
183# if CPUFAM_AMD64
184 mov \reg, \addr@GOTPCREL[rip]
185# endif
1a0c09c4 186#else
0f23f75f 187# if CPUFAM_X86
1a0c09c4 188 mov \reg, offset \addr
0f23f75f
MW
189# endif
190# if CPUFAM_AMD64
191 lea \reg, \addr[rip]
192# endif
1a0c09c4 193#endif
8a1aa284 194.endm
1a0c09c4
MW
195
196// Address expression (possibly using a base register, and a displacement)
197// referring to ADDR, which is within our module, maybe using GOT.
198#define INTADDR(...) INTADDR__0(__VA_ARGS__, GOTREG, dummy)
199#define INTADDR__0(addr, got, ...) INTADDR__1(addr, got)
0f23f75f
MW
200#if CPUFAM_AMD64
201# define INTADDR__1(addr, got) addr + rip
202#elif WANT_PIC
1a0c09c4
MW
203# define INTADDR__1(addr, got) got + addr@GOTOFF
204#else
205# define INTADDR__1(addr, got) addr
206#endif
207
a13b5730
MW
208// Permutations for SIMD instructions. SHUF(D, C, B, A) is an immediate,
209// suitable for use in `pshufd' or `shufpd', which copies element D
210// (0 <= D < 4) of the source to element 3 of the destination, element C to
211// element 2, element B to element 1, and element A to element 0.
212#define SHUF(d, c, b, a) (64*(d) + 16*(c) + 4*(b) + (a))
213
43ea7558
MW
214// Map register names to their individual pieces.
215
216// Apply decoration decor to (internal) register name reg of type ty.
217//
218// See `R_...' for internal register names. Decorations are as follows.
219//
220// b low byte (e.g., `al', `r8b')
221// h high byte (e.g., `ah')
222// w word (e.g., `ax', `r8w')
223// d doubleword (e.g., `eax', `r8d')
224// q quadword (e.g., `rax', `r8')
225// r whole register (doubleword on x86, quadword on amd64)
226//
227// And types are as follows.
228//
229// abcd the four traditional registers `a', `b', `c', `d'
230// xp the four pointer registers `si', `di', `bp', `sp'
231// ip the instruction pointer `ip'
232// rn the AMD64 numbered registers `r8'--`r15'
233#define _DECOR(ty, decor, reg) _DECOR_##ty##_##decor(reg)
234
235// Internal macros: _DECOR_ty_decor(reg) applies decoration decor to
236// (internal) register name reg of type ty.
237
238#define _DECOR_abcd_b(reg) reg##l
239#define _DECOR_abcd_h(reg) reg##h
240#define _DECOR_abcd_w(reg) reg##x
241#define _DECOR_abcd_d(reg) e##reg##x
242#if CPUFAM_AMD64
243# define _DECOR_abcd_q(reg) r##reg##x
244#endif
245
246#define _DECOR_xp_b(reg) reg##l
247#define _DECOR_xp_w(reg) reg
248#define _DECOR_xp_d(reg) e##reg
249#if CPUFAM_AMD64
250# define _DECOR_xp_q(reg) r##reg
251#endif
252
253#define _DECOR_ip_w(reg) reg
254#define _DECOR_ip_d(reg) e##reg
255#if CPUFAM_AMD64
256# define _DECOR_ip_q(reg) r##reg
257#endif
258
259#if CPUFAM_AMD64
260# define _DECOR_rn_b(reg) reg##b
261# define _DECOR_rn_w(reg) reg##w
262# define _DECOR_rn_d(reg) reg##d
263# define _DECOR_rn_q(reg) reg
264# define _DECOR_rn_r(reg) reg
265#endif
266
267#if CPUFAM_X86
268# define _DECOR_abcd_r(reg) e##reg##x
269# define _DECOR_xp_r(reg) e##reg
270# define _DECOR_ip_r(reg) e##reg
271#endif
272#if CPUFAM_AMD64
273# define _DECOR_abcd_r(reg) r##reg##x
274# define _DECOR_xp_r(reg) r##reg
275# define _DECOR_ip_r(reg) r##reg
276#endif
277
278#define _DECOR_mem_b(addr) byte ptr addr
279#define _DECOR_mem_w(addr) word ptr addr
280#define _DECOR_mem_d(addr) dword ptr addr
281#if CPUFAM_AMD64
282# define _DECOR_mem_q(addr) qword ptr addr
283#endif
284
285// R_r(decor) applies decoration decor to register r, which is an internal
286// register name. The internal register names are: `ip', `a', `b', `c', `d',
287// `si', `di', `bp', `sp', `r8'--`r15'.
288#define R_ip(decor) _DECOR(ip, decor, ip)
289#define R_a(decor) _DECOR(abcd, decor, a)
290#define R_b(decor) _DECOR(abcd, decor, b)
291#define R_c(decor) _DECOR(abcd, decor, c)
292#define R_d(decor) _DECOR(abcd, decor, d)
293#define R_si(decor) _DECOR(xp, decor, si)
294#define R_di(decor) _DECOR(xp, decor, di)
295#define R_bp(decor) _DECOR(xp, decor, bp)
296#define R_sp(decor) _DECOR(xp, decor, sp)
297#if CPUFAM_AMD64
298# define R_r8(decor) _DECOR(rn, decor, r8)
299# define R_r9(decor) _DECOR(rn, decor, r9)
300# define R_r10(decor) _DECOR(rn, decor, r10)
301# define R_r11(decor) _DECOR(rn, decor, r11)
302# define R_r12(decor) _DECOR(rn, decor, r12)
303# define R_r13(decor) _DECOR(rn, decor, r13)
304# define R_r14(decor) _DECOR(rn, decor, r14)
305# define R_r15(decor) _DECOR(rn, decor, r15)
306#endif
307
308// Refer to an in-memory datum of the type implied by decor residing at
309// address addr (which should supply its own square-brackets).
310#define MEM(decor, addr) _DECOR(mem, decor, addr)
311
312// Applies decoration decor to assembler-level register name reg.
313#define _REGFORM(reg, decor) _GLUE(_REGFORM_, reg)(decor)
314
315// Internal macros: _REGFORM_r(decor) applies decoration decor to an
316// assembler-level register name, in place of any decoration that register
317// name has already.
318
319#define _REGFORM_ip(decor) R_ip(decor)
320#define _REGFORM_eip(decor) R_ip(decor)
321
322#define _REGFORM_a(decor) R_a(decor)
323#define _REGFORM_al(decor) R_a(decor)
324#define _REGFORM_ah(decor) R_a(decor)
325#define _REGFORM_ax(decor) R_a(decor)
326#define _REGFORM_eax(decor) R_a(decor)
327
328#define _REGFORM_b(decor) R_b(decor)
329#define _REGFORM_bl(decor) R_b(decor)
330#define _REGFORM_bh(decor) R_b(decor)
331#define _REGFORM_bx(decor) R_b(decor)
332#define _REGFORM_ebx(decor) R_b(decor)
333
334#define _REGFORM_c(decor) R_c(decor)
335#define _REGFORM_cl(decor) R_c(decor)
336#define _REGFORM_ch(decor) R_c(decor)
337#define _REGFORM_cx(decor) R_c(decor)
338#define _REGFORM_ecx(decor) R_c(decor)
339
340#define _REGFORM_d(decor) R_d(decor)
341#define _REGFORM_dl(decor) R_d(decor)
342#define _REGFORM_dh(decor) R_d(decor)
343#define _REGFORM_dx(decor) R_d(decor)
344#define _REGFORM_edx(decor) R_d(decor)
345
346#define _REGFORM_si(decor) R_si(decor)
347#define _REGFORM_sil(decor) R_si(decor)
348#define _REGFORM_esi(decor) R_si(decor)
349
350#define _REGFORM_di(decor) R_di(decor)
351#define _REGFORM_dil(decor) R_di(decor)
352#define _REGFORM_edi(decor) R_di(decor)
353
354#define _REGFORM_bp(decor) R_bp(decor)
355#define _REGFORM_bpl(decor) R_bp(decor)
356#define _REGFORM_ebp(decor) R_bp(decor)
357
358#define _REGFORM_sp(decor) R_sp(decor)
359#define _REGFORM_spl(decor) R_sp(decor)
360#define _REGFORM_esp(decor) R_sp(decor)
361
362#if CPUFAM_AMD64
363
364# define _REGFORM_rip(decor) R_ip(decor)
365# define _REGFORM_rsp(decor) R_sp(decor)
366# define _REGFORM_rbp(decor) R_bp(decor)
367# define _REGFORM_rdi(decor) R_di(decor)
368# define _REGFORM_rsi(decor) R_si(decor)
369# define _REGFORM_rdx(decor) R_d(decor)
370# define _REGFORM_rcx(decor) R_c(decor)
371# define _REGFORM_rbx(decor) R_b(decor)
372# define _REGFORM_rax(decor) R_a(decor)
373
374# define _REGFORM_r8(decor) R_r8(decor)
375# define _REGFORM_r8b(decor) R_r8(decor)
376# define _REGFORM_r8w(decor) R_r8(decor)
377# define _REGFORM_r8d(decor) R_r8(decor)
378
379# define _REGFORM_r9(decor) R_r9(decor)
380# define _REGFORM_r9b(decor) R_r9(decor)
381# define _REGFORM_r9w(decor) R_r9(decor)
382# define _REGFORM_r9d(decor) R_r9(decor)
383
384# define _REGFORM_r10(decor) R_r10(decor)
385# define _REGFORM_r10b(decor) R_r10(decor)
386# define _REGFORM_r10w(decor) R_r10(decor)
387# define _REGFORM_r10d(decor) R_r10(decor)
388
389# define _REGFORM_r11(decor) R_r11(decor)
390# define _REGFORM_r11b(decor) R_r11(decor)
391# define _REGFORM_r11w(decor) R_r11(decor)
392# define _REGFORM_r11d(decor) R_r11(decor)
393
394# define _REGFORM_r12(decor) R_r12(decor)
395# define _REGFORM_r12b(decor) R_r12(decor)
396# define _REGFORM_r12w(decor) R_r12(decor)
397# define _REGFORM_r12d(decor) R_r12(decor)
398
399# define _REGFORM_r13(decor) R_r13(decor)
400# define _REGFORM_r13b(decor) R_r13(decor)
401# define _REGFORM_r13w(decor) R_r13(decor)
402# define _REGFORM_r13d(decor) R_r13(decor)
403
404# define _REGFORM_r14(decor) R_r14(decor)
405# define _REGFORM_r14b(decor) R_r14(decor)
406# define _REGFORM_r14w(decor) R_r14(decor)
407# define _REGFORM_r14d(decor) R_r14(decor)
408
409# define _REGFORM_r15(decor) R_r15(decor)
410# define _REGFORM_r15b(decor) R_r15(decor)
411# define _REGFORM_r15w(decor) R_r15(decor)
412# define _REGFORM_r15d(decor) R_r15(decor)
413
414#endif
415
416// Macros for converting register names.
417#define BYTE(reg) _REGFORM(reg, b)
418#define HIBYTE(reg) _REGFORM(reg, h)
419#define WORD(reg) _REGFORM(reg, w)
420#define DWORD(reg) _REGFORM(reg, d)
421#if CPUFAM_AMD64
422# define QWORD(reg) _REGFORM(reg, q)
423#endif
424#define WHOLE(reg) _REGFORM(reg, r)
425
1a0c09c4
MW
426#endif
427
17de5b2e
MW
428#if CPUFAM_X86
429
430.macro _reg.0
431 // Stash GP registers and establish temporary stack frame.
432 pushfd
433 push eax
434 push ecx
435 push edx
436 push ebp
437 mov ebp, esp
438 and esp, ~15
439 sub esp, 512
440 fxsave [esp]
441.endm
442
443.macro _reg.1
444.endm
445
446.macro _reg.2
447.endm
448
449.macro _reg.3 fmt
450 // Print FMT and the other established arguments.
451 lea eax, .L$_reg$msg.\@
452 push eax
453 call printf
454 jmp .L$_reg$cont.\@
455.L$_reg$msg.\@:
456 .ascii ";; \fmt\n\0"
457.L$_reg$cont.\@:
458 mov eax, ebp
459 and eax, ~15
460 sub eax, 512
461 fxrstor [eax]
462 mov esp, ebp
463 pop ebp
464 pop edx
465 pop ecx
466 pop eax
467 popfd
468.endm
469
470.macro msg msg
471 _reg.0
472 _reg.1
473 _reg.2
474 _reg.3 "\msg"
475.endm
476
477.macro reg r, msg
478 _reg.0
479 .ifeqs "\r", "esp"
480 lea eax, [ebp + 20]
481 push eax
482 .else
483 .ifeqs "\r", "ebp"
484 push [ebp]
485 .else
486 push \r
487 .endif
488 .endif
489 _reg.1
490 _reg.2
491 _reg.3 "\msg: \r = %08x"
492.endm
493
494.macro xmmreg r, msg
495 _reg.0
496 _reg.1
497 _reg.2
498 movdqu xmm0, \r
499 pshufd xmm0, xmm0, 0x1b
500 sub esp, 16
501 movdqa [esp], xmm0
502 _reg.3 "\msg: \r = %08x %08x %08x %08x"
503.endm
504
505.macro mmreg r, msg
506 _reg.0
507 _reg.1
508 _reg.2
509 pshufw \r, \r, 0x4e
510 sub esp, 8
511 movq [esp], \r
512 _reg.3 "\msg: \r = %08x %08x"
513.endm
514
515.macro freg i, msg
516 _reg.0
517 _reg.1
518 _reg.2
519 finit
520 fldt [esp + 32 + 16*\i]
521 sub esp, 12
522 fstpt [esp]
523 _reg.3 "\msg: st(\i) = %.20Lg"
524.endm
525
526.macro fxreg i, msg
527 _reg.0
528 _reg.1
529 _reg.2
530 finit
531 fldt [esp + 32 + 16*\i]
532 sub esp, 12
533 fstpt [esp]
534 _reg.3 "\msg: st(\i) = %La"
535.endm
536
537#endif
538
1a0c09c4 539///--------------------------------------------------------------------------
61bd904b
MW
540/// ARM-specific hacking.
541
59d86860 542#if CPUFAM_ARMEL
61bd904b 543
9f6eb05d
MW
544// ARM/Thumb mode things. Use ARM by default.
545#define ARM .arm; .L$_pcoff = 8
546#define THUMB .thumb; .L$_pcoff = 4
547 ARM
548
61bd904b
MW
549// Set the function hooks.
550#define FUNC_PREHOOK(_) .balign 4
551#define ENDFUNC_HOOK(name) .ltorg
552
553// Call external subroutine at ADDR, possibly via PLT.
8a1aa284 554.macro callext addr, cond=
61bd904b
MW
555#if WANT_PIC
556 bl\cond \addr(PLT)
557#else
558 bl\cond \addr
559#endif
8a1aa284 560.endm
61bd904b
MW
561
562// Do I need to arrange a spare GOT register?
563#if WANT_PIC
564# define NEED_GOT 1
565#endif
566#define GOTREG r9
567
568// Maybe load GOT address into GOT.
8a1aa284 569.macro ldgot cond=, got=GOTREG
61bd904b 570#if WANT_PIC
adca2a18
MW
571 ldr\cond \got, .L$_ldgot$\@
572.L$_ldgot_pc$\@:
2d03a881 573 add\cond \got, pc, \got
8a1aa284 574 _LIT
adca2a18
MW
575 .balign 4
576.L$_ldgot$\@:
9f6eb05d 577 .word _GLOBAL_OFFSET_TABLE_ - .L$_ldgot_pc$\@ - .L$_pcoff
8a1aa284 578 _ENDLIT
61bd904b 579#endif
8a1aa284 580.endm
61bd904b
MW
581
582// Load address of external symbol ADDR into REG, maybe using GOT.
8a1aa284 583.macro leaext reg, addr, cond=, got=GOTREG
61bd904b 584#if WANT_PIC
adca2a18 585 ldr\cond \reg, .L$_leaext$\@
2d03a881 586 ldr\cond \reg, [\got, \reg]
8a1aa284 587 _LIT
adca2a18
MW
588 .balign 4
589.L$_leaext$\@:
590 .word \addr(GOT)
8a1aa284 591 _ENDLIT
61bd904b 592#else
2d03a881 593 ldr\cond \reg, =\addr
61bd904b 594#endif
8a1aa284 595.endm
61bd904b 596
0c53ac58 597// Load address of external symbol ADDR into REG directly.
8a1aa284 598.macro leaextq reg, addr, cond=
0c53ac58
MW
599#if WANT_PIC
600 ldr\cond \reg, .L$_leaextq$\@
601.L$_leaextq_pc$\@:
9f6eb05d 602 .if .L$_pcoff == 8
0c53ac58 603 ldr\cond \reg, [pc, \reg]
9f6eb05d
MW
604 .else
605 add\cond \reg, pc
606 ldr\cond \reg, [\reg]
607 .endif
8a1aa284 608 _LIT
0c53ac58
MW
609 .balign 4
610.L$_leaextq$\@:
9f6eb05d 611 .word \addr(GOT_PREL) + (. - .L$_leaextq_pc$\@ - .L$_pcoff)
8a1aa284 612 _ENDLIT
0c53ac58
MW
613#else
614 ldr\cond \reg, =\addr
615#endif
8a1aa284 616.endm
0c53ac58 617
43ea7558
MW
618// Apply decoration decor to register name reg.
619#define _REGFORM(reg, decor) _GLUE(_REGFORM_, reg)(decor)
620
621// Internal macros: `_REGFORM_r(decor)' applies decoration decor to register
622// name r.
623
624#define _REGFORM_s0(decor) _DECOR(s, decor, 0)
625#define _REGFORM_s1(decor) _DECOR(s, decor, 1)
626#define _REGFORM_s2(decor) _DECOR(s, decor, 2)
627#define _REGFORM_s3(decor) _DECOR(s, decor, 3)
628#define _REGFORM_s4(decor) _DECOR(s, decor, 4)
629#define _REGFORM_s5(decor) _DECOR(s, decor, 5)
630#define _REGFORM_s6(decor) _DECOR(s, decor, 6)
631#define _REGFORM_s7(decor) _DECOR(s, decor, 7)
632#define _REGFORM_s8(decor) _DECOR(s, decor, 8)
633#define _REGFORM_s9(decor) _DECOR(s, decor, 9)
634#define _REGFORM_s10(decor) _DECOR(s, decor, 10)
635#define _REGFORM_s11(decor) _DECOR(s, decor, 11)
636#define _REGFORM_s12(decor) _DECOR(s, decor, 12)
637#define _REGFORM_s13(decor) _DECOR(s, decor, 13)
638#define _REGFORM_s14(decor) _DECOR(s, decor, 14)
639#define _REGFORM_s15(decor) _DECOR(s, decor, 15)
640#define _REGFORM_s16(decor) _DECOR(s, decor, 16)
641#define _REGFORM_s17(decor) _DECOR(s, decor, 17)
642#define _REGFORM_s18(decor) _DECOR(s, decor, 18)
643#define _REGFORM_s19(decor) _DECOR(s, decor, 19)
644#define _REGFORM_s20(decor) _DECOR(s, decor, 20)
645#define _REGFORM_s21(decor) _DECOR(s, decor, 21)
646#define _REGFORM_s22(decor) _DECOR(s, decor, 22)
647#define _REGFORM_s23(decor) _DECOR(s, decor, 23)
648#define _REGFORM_s24(decor) _DECOR(s, decor, 24)
649#define _REGFORM_s25(decor) _DECOR(s, decor, 25)
650#define _REGFORM_s26(decor) _DECOR(s, decor, 26)
651#define _REGFORM_s27(decor) _DECOR(s, decor, 27)
652#define _REGFORM_s28(decor) _DECOR(s, decor, 28)
653#define _REGFORM_s29(decor) _DECOR(s, decor, 29)
654#define _REGFORM_s30(decor) _DECOR(s, decor, 30)
655#define _REGFORM_s31(decor) _DECOR(s, decor, 31)
656
657#define _REGFORM_d0(decor) _DECOR(d, decor, 0)
658#define _REGFORM_d1(decor) _DECOR(d, decor, 1)
659#define _REGFORM_d2(decor) _DECOR(d, decor, 2)
660#define _REGFORM_d3(decor) _DECOR(d, decor, 3)
661#define _REGFORM_d4(decor) _DECOR(d, decor, 4)
662#define _REGFORM_d5(decor) _DECOR(d, decor, 5)
663#define _REGFORM_d6(decor) _DECOR(d, decor, 6)
664#define _REGFORM_d7(decor) _DECOR(d, decor, 7)
665#define _REGFORM_d8(decor) _DECOR(d, decor, 8)
666#define _REGFORM_d9(decor) _DECOR(d, decor, 9)
667#define _REGFORM_d10(decor) _DECOR(d, decor, 10)
668#define _REGFORM_d11(decor) _DECOR(d, decor, 11)
669#define _REGFORM_d12(decor) _DECOR(d, decor, 12)
670#define _REGFORM_d13(decor) _DECOR(d, decor, 13)
671#define _REGFORM_d14(decor) _DECOR(d, decor, 14)
672#define _REGFORM_d15(decor) _DECOR(d, decor, 15)
673#define _REGFORM_d16(decor) _DECOR(d, decor, 16)
674#define _REGFORM_d17(decor) _DECOR(d, decor, 17)
675#define _REGFORM_d18(decor) _DECOR(d, decor, 18)
676#define _REGFORM_d19(decor) _DECOR(d, decor, 19)
677#define _REGFORM_d20(decor) _DECOR(d, decor, 20)
678#define _REGFORM_d21(decor) _DECOR(d, decor, 21)
679#define _REGFORM_d22(decor) _DECOR(d, decor, 22)
680#define _REGFORM_d23(decor) _DECOR(d, decor, 23)
681#define _REGFORM_d24(decor) _DECOR(d, decor, 24)
682#define _REGFORM_d25(decor) _DECOR(d, decor, 25)
683#define _REGFORM_d26(decor) _DECOR(d, decor, 26)
684#define _REGFORM_d27(decor) _DECOR(d, decor, 27)
685#define _REGFORM_d28(decor) _DECOR(d, decor, 28)
686#define _REGFORM_d29(decor) _DECOR(d, decor, 29)
687#define _REGFORM_d30(decor) _DECOR(d, decor, 30)
688#define _REGFORM_d31(decor) _DECOR(d, decor, 31)
689
690#define _REGFORM_q0(decor) _DECOR(q, decor, 0)
691#define _REGFORM_q1(decor) _DECOR(q, decor, 1)
692#define _REGFORM_q2(decor) _DECOR(q, decor, 2)
693#define _REGFORM_q3(decor) _DECOR(q, decor, 3)
694#define _REGFORM_q4(decor) _DECOR(q, decor, 4)
695#define _REGFORM_q5(decor) _DECOR(q, decor, 5)
696#define _REGFORM_q6(decor) _DECOR(q, decor, 6)
697#define _REGFORM_q7(decor) _DECOR(q, decor, 7)
698#define _REGFORM_q8(decor) _DECOR(q, decor, 8)
699#define _REGFORM_q9(decor) _DECOR(q, decor, 9)
700#define _REGFORM_q10(decor) _DECOR(q, decor, 10)
701#define _REGFORM_q11(decor) _DECOR(q, decor, 11)
702#define _REGFORM_q12(decor) _DECOR(q, decor, 12)
703#define _REGFORM_q13(decor) _DECOR(q, decor, 13)
704#define _REGFORM_q14(decor) _DECOR(q, decor, 14)
705#define _REGFORM_q15(decor) _DECOR(q, decor, 15)
706
707// `_LOPART(n)' and `_HIPART(n)' return the numbers of the register halves of
708// register n, i.e., 2*n and 2*n + 1 respectively.
709#define _LOPART(n) _GLUE(_LOPART_, n)
710#define _HIPART(n) _GLUE(_HIPART_, n)
711
712// Internal macros: `_LOPART_n' and `_HIPART_n' return the numbers of the
713// register halves of register n, i.e., 2*n and 2*n + 1 respectively.
714
715#define _LOPART_0 0
716#define _HIPART_0 1
717#define _LOPART_1 2
718#define _HIPART_1 3
719#define _LOPART_2 4
720#define _HIPART_2 5
721#define _LOPART_3 6
722#define _HIPART_3 7
723#define _LOPART_4 8
724#define _HIPART_4 9
725#define _LOPART_5 10
726#define _HIPART_5 11
727#define _LOPART_6 12
728#define _HIPART_6 13
729#define _LOPART_7 14
730#define _HIPART_7 15
731#define _LOPART_8 16
732#define _HIPART_8 17
733#define _LOPART_9 18
734#define _HIPART_9 19
735#define _LOPART_10 20
736#define _HIPART_10 21
737#define _LOPART_11 22
738#define _HIPART_11 23
739#define _LOPART_12 24
740#define _HIPART_12 25
741#define _LOPART_13 26
742#define _HIPART_13 27
743#define _LOPART_14 28
744#define _HIPART_14 29
745#define _LOPART_15 30
746#define _HIPART_15 31
747
748// Return the register number of the pair containing register n, i.e.,
749// floor(n/2).
750#define _PAIR(n) _GLUE(_PAIR_, n)
751
752// Internal macros: `_PAIR_n' returns the register number of the pair
753// containing register n, i.e., floor(n/2).
754#define _PAIR_0 0
755#define _PAIR_1 0
756#define _PAIR_2 1
757#define _PAIR_3 1
758#define _PAIR_4 2
759#define _PAIR_5 2
760#define _PAIR_6 3
761#define _PAIR_7 3
762#define _PAIR_8 4
763#define _PAIR_9 4
764#define _PAIR_10 5
765#define _PAIR_11 5
766#define _PAIR_12 6
767#define _PAIR_13 6
768#define _PAIR_14 7
769#define _PAIR_15 7
770#define _PAIR_16 8
771#define _PAIR_17 8
772#define _PAIR_18 9
773#define _PAIR_19 9
774#define _PAIR_20 10
775#define _PAIR_21 10
776#define _PAIR_22 11
777#define _PAIR_23 11
778#define _PAIR_24 12
779#define _PAIR_25 12
780#define _PAIR_26 13
781#define _PAIR_27 13
782#define _PAIR_28 14
783#define _PAIR_29 14
784#define _PAIR_30 15
785#define _PAIR_31 15
786
787// Apply decoration decor to register number n of type ty. Decorations are
788// as follows.
789//
790// decor types meaning
791// Q s, d the NEON qN register containing this one
792// D s the NEON dN register containing this one
793// D0 q the low 64-bit half of this one
794// D1 q the high 64-bit half of this one
795// S0 d, q the first 32-bit piece of this one
796// S1 d, q the second 32-bit piece of this one
797// S2 q the third 32-bit piece of this one
798// S3 q the fourth 32-bit piece of this one
799// Bn q the nth byte of this register, as a scalar
800// Hn q the nth halfword of this register, as a scalar
801// Wn q the nth word of this register, as a scalar
802#define _DECOR(ty, decor, n) _DECOR_##ty##_##decor(n)
803
804// Internal macros: `_DECOR_ty_decor(n)' applies decoration decor to register
805// number n of type ty.
806
807#define _DECOR_s_Q(n) GLUE(q, _PAIR(_PAIR(n)))
808#define _DECOR_s_D(n) GLUE(d, _PAIR(n))
809
810#define _DECOR_d_Q(n) GLUE(q, _PAIR(n))
811#define _DECOR_d_S0(n) GLUE(s, _LOPART(n))
812#define _DECOR_d_S1(n) GLUE(s, _LOPART(n))
813
814#define _DECOR_q_D0(n) GLUE(d, _LOPART(n))
815#define _DECOR_q_D1(n) GLUE(d, _HIPART(n))
816#define _DECOR_q_S0(n) GLUE(s, _LOPART(_LOPART(n)))
817#define _DECOR_q_S1(n) GLUE(s, _HIPART(_LOPART(n)))
818#define _DECOR_q_S2(n) GLUE(s, _LOPART(_HIPART(n)))
819#define _DECOR_q_S3(n) GLUE(s, _HIPART(_HIPART(n)))
820#define _DECOR_q_W0(n) GLUE(d, _LOPART(n))[0]
821#define _DECOR_q_W1(n) GLUE(d, _LOPART(n))[1]
822#define _DECOR_q_W2(n) GLUE(d, _HIPART(n))[0]
823#define _DECOR_q_W3(n) GLUE(d, _HIPART(n))[1]
824#define _DECOR_q_H0(n) GLUE(d, _LOPART(n))[0]
825#define _DECOR_q_H1(n) GLUE(d, _LOPART(n))[1]
826#define _DECOR_q_H2(n) GLUE(d, _LOPART(n))[2]
827#define _DECOR_q_H3(n) GLUE(d, _LOPART(n))[3]
828#define _DECOR_q_H4(n) GLUE(d, _HIPART(n))[0]
829#define _DECOR_q_H5(n) GLUE(d, _HIPART(n))[1]
830#define _DECOR_q_H6(n) GLUE(d, _HIPART(n))[2]
831#define _DECOR_q_H7(n) GLUE(d, _HIPART(n))[3]
832#define _DECOR_q_B0(n) GLUE(d, _LOPART(n))[0]
833#define _DECOR_q_B1(n) GLUE(d, _LOPART(n))[1]
834#define _DECOR_q_B2(n) GLUE(d, _LOPART(n))[2]
835#define _DECOR_q_B3(n) GLUE(d, _LOPART(n))[3]
836#define _DECOR_q_B4(n) GLUE(d, _LOPART(n))[4]
837#define _DECOR_q_B5(n) GLUE(d, _LOPART(n))[5]
838#define _DECOR_q_B6(n) GLUE(d, _LOPART(n))[6]
839#define _DECOR_q_B7(n) GLUE(d, _LOPART(n))[7]
840#define _DECOR_q_B8(n) GLUE(d, _HIPART(n))[0]
841#define _DECOR_q_B9(n) GLUE(d, _HIPART(n))[1]
842#define _DECOR_q_B10(n) GLUE(d, _HIPART(n))[2]
843#define _DECOR_q_B11(n) GLUE(d, _HIPART(n))[3]
844#define _DECOR_q_B12(n) GLUE(d, _HIPART(n))[4]
845#define _DECOR_q_B13(n) GLUE(d, _HIPART(n))[5]
846#define _DECOR_q_B14(n) GLUE(d, _HIPART(n))[6]
847#define _DECOR_q_B15(n) GLUE(d, _HIPART(n))[7]
848
849// Macros for navigating the NEON register hierarchy.
850#define S0(reg) _REGFORM(reg, S0)
851#define S1(reg) _REGFORM(reg, S1)
852#define S2(reg) _REGFORM(reg, S2)
853#define S3(reg) _REGFORM(reg, S3)
854#define D(reg) _REGFORM(reg, D)
855#define D0(reg) _REGFORM(reg, D0)
856#define D1(reg) _REGFORM(reg, D1)
857#define Q(reg) _REGFORM(reg, Q)
858
859// Macros for indexing quadword registers.
860#define QB(reg, i) _REGFORM(reg, B##i)
861#define QH(reg, i) _REGFORM(reg, H##i)
862#define QW(reg, i) _REGFORM(reg, W##i)
863
864// Macros for converting vldm/vstm ranges.
865#define QQ(qlo, qhi) D0(qlo)-D1(qhi)
866
61bd904b
MW
867#endif
868
869///--------------------------------------------------------------------------
1a0c09c4
MW
870/// Final stuff.
871
872// Default values for the various hooks.
873#ifndef FUNC_PREHOOK
1e5664a6 874# define FUNC_PREHOOK(_)
1a0c09c4
MW
875#endif
876#ifndef FUNC_POSTHOOK
1e5664a6 877# define FUNC_POSTHOOK(_)
1a0c09c4
MW
878#endif
879#ifndef ENDFUNC_HOOK
1e5664a6 880# define ENDFUNC_HOOK(_)
1a0c09c4
MW
881#endif
882
883#ifndef F
884# define F(name) name
885#endif
886
887#ifndef TYPE_FUNC
888# define TYPE_FUNC(name)
889#endif
890
891#ifndef SIZE_OBJ
892# define SIZE_OBJ(name)
893#endif
894
1aa5bfa8
MW
895#if __ELF__ && defined(WANT_EXECUTABLE_STACK)
896 .pushsection .note.GNU-stack, "", _SECTTY(progbits)
897 .popsection
898#endif
899
1a0c09c4 900///----- That's all, folks --------------------------------------------------