base/asm-common.h: Add some debugging macros.
[catacomb] / math / mpx.c
CommitLineData
d03ab969 1/* -*-c-*-
2 *
d03ab969 3 * Low-level multiprecision arithmetic
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
45c0fd36 8/*----- Licensing notice --------------------------------------------------*
d03ab969 9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
45c0fd36 16 *
d03ab969 17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
45c0fd36 21 *
d03ab969 22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
d03ab969 28/*----- Header files ------------------------------------------------------*/
29
c8a2f9ef 30#include <assert.h>
d03ab969 31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34
35#include <mLib/bits.h>
23bbea75 36#include <mLib/macros.h>
d03ab969 37
38#include "mptypes.h"
39#include "mpx.h"
75263f25 40#include "bitops.h"
d03ab969 41
42/*----- Loading and storing -----------------------------------------------*/
43
0c9ebe47
MW
44/* --- These are all variations on a theme --- *
45 *
46 * Essentially we want to feed bits into a shift register, @ibits@ bits at a
47 * time, and extract them @obits@ bits at a time whenever there are enough.
48 * Of course, @i@ and @o@ will, in general, be different sizes, and we don't
49 * necessarily know which is larger.
50 *
51 * During an operation, we have a shift register @w@ and a most-recent input
52 * @t@. Together, these hold @bits@ significant bits of input. We arrange
53 * that @bits < ibits + obits <= 2*MPW_BITS@, so we can get away with using
54 * an @mpw@ for both of these quantitities.
55 */
56
57/* --- @MPX_GETBITS@ --- *
58 *
59 * Arguments: @ibits@ = width of input units, in bits
60 * @obits@ = width of output units, in bits
61 * @iavail@ = condition expression: is input data available?
62 * @getbits@ = function or macro: set argument to next input
63 *
64 * Use: Read an input unit into @t@ and update the necessary
65 * variables.
66 *
67 * It is assumed on entry that @bits < obits@. On exit, we have
68 * @bits < ibits + obits@, and @t@ is live.
69 */
70
71#define MPX_GETBITS(ibits, obits, iavail, getbits) do { \
72 if (!iavail) goto flush; \
73 if (bits >= ibits) w |= t << (bits - ibits); \
74 getbits(t); \
75 bits += ibits; \
76} while (0)
77
78/* --- @MPX_PUTBITS@ --- *
79 *
80 * Arguments: @ibits@ = width of input units, in bits
81 * @obits@ = width of output units, in bits
82 * @oavail@ = condition expression: is output space available?
83 * @putbits@ = function or macro: write its argument to output
84 *
85 * Use: Emit an output unit, and update the necessary variables. If
86 * the output buffer is full, then force an immediate return.
87 *
88 * We assume that @bits < ibits + obits@, and that @t@ is only
89 * relevant if @bits >= ibits@. (The @MPX_GETBITS@ macro
90 * ensures that this is true.)
91 */
92
93#define SHRW(w, b) ((b) < MPW_BITS ? (w) >> (b) : 0)
94
95#define MPX_PUTBITS(ibits, obits, oavail, putbits) do { \
96 if (!oavail) return; \
97 if (bits < ibits) { \
98 putbits(w); \
99 bits -= obits; \
100 w = SHRW(w, obits); \
101 } else { \
102 putbits(w | (t << (bits - ibits))); \
103 bits -= obits; \
104 if (bits >= ibits) w = SHRW(w, obits) | (t << (bits - ibits)); \
105 else w = SHRW(w, obits) | (t >> (ibits - bits)); \
106 t = 0; \
107 } \
108} while (0)
109
110/* --- @MPX_LOADSTORE@ --- *
111 *
112 * Arguments: @name@ = name of function to create, without @mpx_@ prefix
113 * @wconst@ = qualifiers for @mpw *@ arguments
114 * @oconst@ = qualifiers for octet pointers
115 * @decls@ = additional declarations needed
116 * @ibits@ = width of input units, in bits
117 * @iavail@ = condition expression: is input data available?
118 * @getbits@ = function or macro: set argument to next input
119 * @obits@ = width of output units, in bits
120 * @oavail@ = condition expression: is output space available?
121 * @putbits@ = function or macro: write its argument to output
122 * @clear@ = statements to clear remainder of output
123 *
124 * Use: Generates a function to convert between a sequence of
125 * multiprecision words and a vector of octets.
126 *
127 * The arguments @ibits@, @iavail@ and @getbits@ are passed on
128 * to @MPX_GETBITS@; similarly, @obits@, @oavail@, and @putbits@
129 * are passed on to @MPX_PUTBITS@.
130 *
131 * The following variables are in scope: @v@ and @vl are the
132 * current base and limit of the word vector; @p@ and @q@ are
133 * the base and limit of the octet vector; @w@ and @t@ form the
134 * shift register used during the conversion (see commentary
135 * above); and @bits@ tracks the number of live bits in the
136 * shift register.
137 */
138
139#define MPX_LOADSTORE(name, wconst, oconst, decls, \
140 ibits, iavail, getbits, obits, oavail, putbits, \
141 clear) \
142 \
143void mpx_##name(wconst mpw *v, wconst mpw *vl, \
144 oconst void *pp, size_t sz) \
145{ \
146 mpw t = 0, w = 0; \
147 oconst octet *p = pp, *q = p + sz; \
148 int bits = 0; \
149 decls \
150 \
151 for (;;) { \
152 while (bits < obits) MPX_GETBITS(ibits, obits, iavail, getbits); \
153 while (bits >= obits) MPX_PUTBITS(ibits, obits, oavail, putbits); \
154 } \
155 \
156flush: \
157 while (bits > 0) MPX_PUTBITS(ibits, obits, oavail, putbits); \
158 clear; \
159}
160
161#define EMPTY
162
163/* --- Macros for @getbits@ and @putbits@ --- */
164
165#define GETMPW(t) do { t = *v++; } while (0)
166#define PUTMPW(x) do { *v++ = MPW(x); } while (0)
167
168#define GETOCTETI(t) do { t = *p++; } while (0)
169#define PUTOCTETD(x) do { *--q = U8(x); } while (0)
170
171#define PUTOCTETI(x) do { *p++ = U8(x); } while (0)
172#define GETOCTETD(t) do { t = *--q; } while (0)
173
174/* --- Machinery for two's complement I/O --- */
175
176#define DECL_2CN \
177 unsigned c = 1;
178
179#define GETMPW_2CN(t) do { \
180 t = MPW(~*v++ + c); \
181 c = c && !t; \
182} while (0)
183
184#define PUTMPW_2CN(t) do { \
185 mpw _t = MPW(~(t) + c); \
186 c = c && !_t; \
187 *v++ = _t; \
188} while (0)
189
190#define FLUSHW_2CN do { \
191 if (c) MPX_ONE(v, vl); \
192 else MPX_ZERO(v, vl); \
193} while (0)
194
195#define FLUSHO_2CN do { \
196 memset(p, c ? 0xff : 0, q - p); \
197} while (0)
198
d03ab969 199/* --- @mpx_storel@ --- *
200 *
201 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
c8a2f9ef 202 * @void *pp@ = pointer to octet array
d03ab969 203 * @size_t sz@ = size of octet array
204 *
205 * Returns: ---
206 *
207 * Use: Stores an MP in an octet array, least significant octet
208 * first. High-end octets are silently discarded if there
209 * isn't enough space for them.
210 */
211
0c9ebe47
MW
212MPX_LOADSTORE(storel, const, EMPTY, EMPTY,
213 MPW_BITS, (v < vl), GETMPW,
214 8, (p < q), PUTOCTETI,
215 { memset(p, 0, q - p); })
d03ab969 216
217/* --- @mpx_loadl@ --- *
218 *
219 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
c8a2f9ef 220 * @const void *pp@ = pointer to octet array
d03ab969 221 * @size_t sz@ = size of octet array
222 *
223 * Returns: ---
224 *
225 * Use: Loads an MP in an octet array, least significant octet
226 * first. High-end octets are ignored if there isn't enough
227 * space for them.
228 */
229
0c9ebe47
MW
230MPX_LOADSTORE(loadl, EMPTY, const, EMPTY,
231 8, (p < q), GETOCTETI,
232 MPW_BITS, (v < vl), PUTMPW,
233 { MPX_ZERO(v, vl); })
234
d03ab969 235
236/* --- @mpx_storeb@ --- *
237 *
238 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
c8a2f9ef 239 * @void *pp@ = pointer to octet array
d03ab969 240 * @size_t sz@ = size of octet array
241 *
242 * Returns: ---
243 *
244 * Use: Stores an MP in an octet array, most significant octet
245 * first. High-end octets are silently discarded if there
246 * isn't enough space for them.
247 */
248
0c9ebe47
MW
249MPX_LOADSTORE(storeb, const, EMPTY, EMPTY,
250 MPW_BITS, (v < vl), GETMPW,
251 8, (p < q), PUTOCTETD,
252 { memset(p, 0, q - p); })
d03ab969 253
254/* --- @mpx_loadb@ --- *
255 *
256 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
c8a2f9ef 257 * @const void *pp@ = pointer to octet array
d03ab969 258 * @size_t sz@ = size of octet array
259 *
260 * Returns: ---
261 *
262 * Use: Loads an MP in an octet array, most significant octet
263 * first. High-end octets are ignored if there isn't enough
264 * space for them.
265 */
266
0c9ebe47
MW
267MPX_LOADSTORE(loadb, EMPTY, const, EMPTY,
268 8, (p < q), GETOCTETD,
269 MPW_BITS, (v < vl), PUTMPW,
270 { MPX_ZERO(v, vl); })
d03ab969 271
f09e814a 272/* --- @mpx_storel2cn@ --- *
273 *
274 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
275 * @void *pp@ = pointer to octet array
276 * @size_t sz@ = size of octet array
277 *
278 * Returns: ---
279 *
280 * Use: Stores a negative MP in an octet array, least significant
281 * octet first, as two's complement. High-end octets are
282 * silently discarded if there isn't enough space for them.
283 * This obviously makes the output bad.
284 */
285
0c9ebe47
MW
286MPX_LOADSTORE(storel2cn, const, EMPTY, DECL_2CN,
287 MPW_BITS, (v < vl), GETMPW_2CN,
288 8, (p < q), PUTOCTETI,
289 { FLUSHO_2CN; })
f09e814a 290
291/* --- @mpx_loadl2cn@ --- *
292 *
293 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
294 * @const void *pp@ = pointer to octet array
295 * @size_t sz@ = size of octet array
296 *
297 * Returns: ---
298 *
299 * Use: Loads a negative MP in an octet array, least significant
300 * octet first, as two's complement. High-end octets are
301 * ignored if there isn't enough space for them. This probably
302 * means you made the wrong choice coming here.
303 */
304
0c9ebe47
MW
305MPX_LOADSTORE(loadl2cn, EMPTY, const, DECL_2CN,
306 8, (p < q), GETOCTETI,
307 MPW_BITS, (v < vl), PUTMPW_2CN,
308 { FLUSHW_2CN; })
f09e814a 309
310/* --- @mpx_storeb2cn@ --- *
311 *
312 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
313 * @void *pp@ = pointer to octet array
314 * @size_t sz@ = size of octet array
315 *
316 * Returns: ---
317 *
318 * Use: Stores a negative MP in an octet array, most significant
319 * octet first, as two's complement. High-end octets are
320 * silently discarded if there isn't enough space for them,
321 * which probably isn't what you meant.
322 */
323
0c9ebe47
MW
324MPX_LOADSTORE(storeb2cn, const, EMPTY, DECL_2CN,
325 MPW_BITS, (v < vl), GETMPW_2CN,
326 8, (p < q), PUTOCTETD,
327 { FLUSHO_2CN; })
f09e814a 328
329/* --- @mpx_loadb2cn@ --- *
330 *
331 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
332 * @const void *pp@ = pointer to octet array
333 * @size_t sz@ = size of octet array
334 *
335 * Returns: ---
336 *
337 * Use: Loads a negative MP in an octet array, most significant octet
338 * first as two's complement. High-end octets are ignored if
339 * there isn't enough space for them. This probably means you
340 * chose this function wrongly.
341 */
342
0c9ebe47
MW
343MPX_LOADSTORE(loadb2cn, EMPTY, const, DECL_2CN,
344 8, (p < q), GETOCTETD,
345 MPW_BITS, (v < vl), PUTMPW_2CN,
346 { FLUSHW_2CN; })
f09e814a 347
d03ab969 348/*----- Logical shifting --------------------------------------------------*/
349
5ee480b5 350/* --- @MPX_SHIFT1@ --- *
d03ab969 351 *
5ee480b5
MW
352 * Arguments: @init@ = initial accumulator value
353 * @out@ = expression to store in each output word
354 * @next@ = expression for next accumulator value
d03ab969 355 *
5ee480b5
MW
356 * Use: Performs a single-position shift. The input is scanned
357 * right-to-left. In the expressions @out@ and @next@, the
358 * accumulator is available in @w@ and the current input word is
359 * in @t@.
d03ab969 360 *
5ee480b5
MW
361 * This macro is intended to be used in the @shift1@ argument of
362 * @MPX_SHIFTOP@, and expects variables describing the operation
363 * to be set up accordingly.
d03ab969 364 */
365
5ee480b5
MW
366#define MPX_SHIFT1(init, out, next) do { \
367 mpw t, w = (init); \
368 while (av < avl) { \
369 if (dv >= dvl) break; \
370 t = MPW(*av++); \
371 *dv++ = (out); \
372 w = (next); \
373 } \
374 if (dv < dvl) { *dv++ = MPW(w); MPX_ZERO(dv, dvl); } \
375} while (0)
376
377/* --- @MPX_SHIFTW@ --- *
378 *
379 * Arguments: @max@ = the maximum shift (in words) which is nontrivial
380 * @clear@ = function (or macro) to clear low-order output words
381 * @copy@ = statement to copy words from input to output
382 *
383 * Use: Performs a shift by a whole number of words. If the shift
384 * amount is @max@ or more words, then the destination is
385 * @clear@ed entirely; otherwise, @copy@ is executed.
386 *
387 * This macro is intended to be used in the @shiftw@ argument of
388 * @MPX_SHIFTOP@, and expects variables describing the operation
389 * to be set up accordingly.
390 */
d03ab969 391
5ee480b5
MW
392#define MPX_SHIFTW(max, clear, copy) do { \
393 if (nw >= (max)) clear(dv, dvl); \
394 else copy \
395} while (0)
d03ab969 396
5ee480b5
MW
397/* --- @MPX_SHIFTOP@ --- *
398 *
399 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
400 * @shift1@ = statement to shift by a single bit
401 * @shiftw@ = statement to shift by a whole number of words
402 * @shift@ = statement to perform a general shift
403 *
404 * Use: Emits a shift operation. The input is @av@..@avl@; the
405 * output is @dv@..@dvl@; and the shift amount (in bits) is
406 * @n@. In @shiftw@ and @shift@, @nw@ and @nb@ are set up such
407 * that @n = nw*MPW_BITS + nb@ and @nb < MPW_BITS@.
408 */
d03ab969 409
5ee480b5
MW
410#define MPX_SHIFTOP(name, shift1, shiftw, shift) \
411 \
412void mpx_##name(mpw *dv, mpw *dvl, \
413 const mpw *av, const mpw *avl, \
414 size_t n) \
415{ \
416 \
417 if (n == 0) \
418 MPX_COPY(dv, dvl, av, avl); \
419 else if (n == 1) \
420 do shift1 while (0); \
421 else { \
422 size_t nw = n/MPW_BITS; \
423 unsigned nb = n%MPW_BITS; \
424 if (!nb) do shiftw while (0); \
425 else do shift while (0); \
426 } \
427}
d03ab969 428
5ee480b5
MW
429/* --- @MPX_SHIFT_LEFT@ --- *
430 *
431 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
432 * @init1@ = initializer for single-bit shift accumulator
433 * @clear@ = function (or macro) to clear low-order output words
434 * @flush@ = expression for low-order nontrivial output word
435 *
436 * Use: Emits a left-shift operation. This expands to a call on
437 * @MPX_SHIFTOP@, but implements the complicated @shift@
438 * statement.
439 *
440 * The @init1@ argument is as for @MPX_SHIFT1@, and @clear@ is
441 * as for @MPX_SHIFTW@ (though is used elsewhere). In a general
442 * shift, @nw@ whole low-order output words are set using
443 * @clear@; high-order words are zeroed; and the remaining words
444 * set with a left-to-right pass across the input; at the end of
445 * the operation, the least significant output word above those
446 * @clear@ed is set using @flush@, which may use the accumulator
447 * @w@ = @av[0] << nb@.
448 */
d03ab969 449
5ee480b5
MW
450#define MPX_SHIFT_LEFT(name, init1, clear, flush) \
451MPX_SHIFTOP(name, { \
452 MPX_SHIFT1(init1, \
453 w | (t << 1), \
454 t >> (MPW_BITS - 1)); \
455}, { \
456 MPX_SHIFTW(dvl - dv, clear, { \
457 MPX_COPY(dv + nw, dvl, av, avl); \
458 clear(dv, dv + nw); \
459 }); \
460}, { \
461 size_t nr = MPW_BITS - nb; \
462 size_t dvn = dvl - dv; \
463 size_t avn = avl - av; \
464 mpw w; \
465 \
466 if (dvn <= nw) { \
467 clear(dv, dvl); \
468 break; \
469 } \
470 \
471 if (dvn <= avn + nw) { \
472 avl = av + dvn - nw; \
473 w = *--avl << nb; \
474 } else { \
475 size_t off = avn + nw + 1; \
476 MPX_ZERO(dv + off, dvl); \
477 dvl = dv + off; \
478 w = 0; \
479 } \
480 \
481 while (avl > av) { \
482 mpw t = *--avl; \
483 *--dvl = MPW(w | (t >> nr)); \
484 w = t << nb; \
485 } \
486 \
487 *--dvl = MPW(flush); \
488 clear(dv, dvl); \
489})
c8a2f9ef 490
5ee480b5
MW
491/* --- @mpx_lsl@ --- *
492 *
493 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
494 * @const mpw *av, *avl@ = source vector base and limit
495 * @size_t n@ = number of bit positions to shift by
496 *
497 * Returns: ---
498 *
499 * Use: Performs a logical shift left operation on an integer.
500 */
d03ab969 501
5ee480b5 502MPX_SHIFT_LEFT(lsl, 0, MPX_ZERO, w)
d03ab969 503
81578196 504/* --- @mpx_lslc@ --- *
505 *
506 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
507 * @const mpw *av, *avl@ = source vector base and limit
508 * @size_t n@ = number of bit positions to shift by
509 *
510 * Returns: ---
511 *
512 * Use: Performs a logical shift left operation on an integer, only
513 * it fills in the bits with ones instead of zeroes.
514 */
515
5ee480b5 516MPX_SHIFT_LEFT(lslc, 1, MPX_ONE, w | (MPW_MAX >> nr))
81578196 517
d03ab969 518/* --- @mpx_lsr@ --- *
519 *
520 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
521 * @const mpw *av, *avl@ = source vector base and limit
522 * @size_t n@ = number of bit positions to shift by
523 *
524 * Returns: ---
525 *
526 * Use: Performs a logical shift right operation on an integer.
527 */
528
5ee480b5
MW
529MPX_SHIFTOP(lsr, {
530 MPX_SHIFT1(av < avl ? *av++ >> 1 : 0,
531 w | (t << (MPW_BITS - 1)),
532 t >> 1);
533}, {
534 MPX_SHIFTW(avl - av, MPX_ZERO,
535 { MPX_COPY(dv, dvl, av + nw, avl); });
536}, {
537 size_t nr = MPW_BITS - nb;
538 mpw w;
539
540 av += nw;
541 w = av < avl ? *av++ : 0;
542 while (av < avl) {
543 mpw t;
544 if (dv >= dvl) goto done;
545 t = *av++;
546 *dv++ = MPW((w >> nb) | (t << nr));
547 w = t;
d03ab969 548 }
5ee480b5
MW
549 if (dv < dvl) {
550 *dv++ = MPW(w >> nb);
551 MPX_ZERO(dv, dvl);
d03ab969 552 }
d03ab969 553done:;
5ee480b5 554})
d03ab969 555
0f32e0f8 556/*----- Bitwise operations ------------------------------------------------*/
557
f09e814a 558/* --- @mpx_bitop@ --- *
0f32e0f8 559 *
560 * Arguments: @mpw *dv, *dvl@ = destination vector
561 * @const mpw *av, *avl@ = first source vector
562 * @const mpw *bv, *bvl@ = second source vector
563 *
564 * Returns: ---
565 *
f09e814a 566 * Use; Provides the dyadic boolean functions.
0f32e0f8 567 */
568
f09e814a 569#define MPX_BITBINOP(string) \
0f32e0f8 570 \
f09e814a 571void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
572 const mpw *bv, const mpw *bvl) \
0f32e0f8 573{ \
574 MPX_SHRINK(av, avl); \
575 MPX_SHRINK(bv, bvl); \
576 \
577 while (dv < dvl) { \
578 mpw a, b; \
579 a = (av < avl) ? *av++ : 0; \
580 b = (bv < bvl) ? *bv++ : 0; \
75263f25 581 *dv++ = B##string(a, b); \
23bbea75 582 IGNORE(a); IGNORE(b); \
0f32e0f8 583 } \
584}
585
f09e814a 586MPX_DOBIN(MPX_BITBINOP)
0f32e0f8 587
588void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
589{
590 MPX_SHRINK(av, avl);
591
592 while (dv < dvl) {
593 mpw a;
594 a = (av < avl) ? *av++ : 0;
595 *dv++ = ~a;
596 }
597}
598
d03ab969 599/*----- Unsigned arithmetic -----------------------------------------------*/
600
f45a00c6 601/* --- @mpx_2c@ --- *
602 *
603 * Arguments: @mpw *dv, *dvl@ = destination vector
604 * @const mpw *v, *vl@ = source vector
605 *
606 * Returns: ---
607 *
608 * Use: Calculates the two's complement of @v@.
609 */
610
611void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
612{
613 mpw c = 0;
614 while (dv < dvl && v < vl)
615 *dv++ = c = MPW(~*v++);
616 if (dv < dvl) {
617 if (c > MPW_MAX / 2)
618 c = MPW(~0);
619 while (dv < dvl)
620 *dv++ = c;
621 }
622 MPX_UADDN(dv, dvl, 1);
623}
624
1a05a8ef 625/* --- @mpx_ueq@ --- *
626 *
627 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
628 * @const mpw *bv, *bvl@ = second argument vector base and limit
629 *
630 * Returns: Nonzero if the two vectors are equal.
631 *
632 * Use: Performs an unsigned integer test for equality.
633 */
634
635int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
636{
637 MPX_SHRINK(av, avl);
638 MPX_SHRINK(bv, bvl);
639 if (avl - av != bvl - bv)
640 return (0);
641 while (av < avl) {
642 if (*av++ != *bv++)
643 return (0);
644 }
645 return (1);
646}
647
d03ab969 648/* --- @mpx_ucmp@ --- *
649 *
650 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
651 * @const mpw *bv, *bvl@ = second argument vector base and limit
652 *
653 * Returns: Less than, equal to, or greater than zero depending on
654 * whether @a@ is less than, equal to or greater than @b@,
655 * respectively.
656 *
657 * Use: Performs an unsigned integer comparison.
658 */
659
660int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
661{
662 MPX_SHRINK(av, avl);
663 MPX_SHRINK(bv, bvl);
664
665 if (avl - av > bvl - bv)
666 return (+1);
667 else if (avl - av < bvl - bv)
668 return (-1);
669 else while (avl > av) {
670 mpw a = *--avl, b = *--bvl;
671 if (a > b)
672 return (+1);
673 else if (a < b)
674 return (-1);
675 }
676 return (0);
677}
1a05a8ef 678
d03ab969 679/* --- @mpx_uadd@ --- *
680 *
681 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
682 * @const mpw *av, *avl@ = first addend vector base and limit
683 * @const mpw *bv, *bvl@ = second addend vector base and limit
684 *
685 * Returns: ---
686 *
687 * Use: Performs unsigned integer addition. If the result overflows
688 * the destination vector, high-order bits are discarded. This
689 * means that two's complement addition happens more or less for
690 * free, although that's more a side-effect than anything else.
691 * The result vector may be equal to either or both source
692 * vectors, but may not otherwise overlap them.
693 */
694
695void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
696 const mpw *bv, const mpw *bvl)
697{
698 mpw c = 0;
699
700 while (av < avl || bv < bvl) {
701 mpw a, b;
702 mpd x;
703 if (dv >= dvl)
704 return;
705 a = (av < avl) ? *av++ : 0;
706 b = (bv < bvl) ? *bv++ : 0;
707 x = (mpd)a + (mpd)b + c;
708 *dv++ = MPW(x);
709 c = x >> MPW_BITS;
710 }
711 if (dv < dvl) {
712 *dv++ = c;
713 MPX_ZERO(dv, dvl);
714 }
715}
716
dd517851 717/* --- @mpx_uaddn@ --- *
718 *
719 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
720 * @mpw n@ = other addend
721 *
722 * Returns: ---
723 *
724 * Use: Adds a small integer to a multiprecision number.
725 */
726
727void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
728
f46efa79 729/* --- @mpx_uaddnlsl@ --- *
730 *
731 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
732 * @mpw a@ = second argument
733 * @unsigned o@ = offset in bits
734 *
735 * Returns: ---
736 *
737 * Use: Computes %$d + 2^o a$%. If the result overflows then
738 * high-order bits are discarded, as usual. We must have
739 * @0 < o < MPW_BITS@.
740 */
741
742void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
743{
744 mpd x = (mpd)a << o;
745
746 while (x && dv < dvl) {
747 x += *dv;
748 *dv++ = MPW(x);
749 x >>= MPW_BITS;
750 }
751}
752
d03ab969 753/* --- @mpx_usub@ --- *
754 *
755 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
756 * @const mpw *av, *avl@ = first argument vector base and limit
757 * @const mpw *bv, *bvl@ = second argument vector base and limit
758 *
759 * Returns: ---
760 *
761 * Use: Performs unsigned integer subtraction. If the result
762 * overflows the destination vector, high-order bits are
763 * discarded. This means that two's complement subtraction
764 * happens more or less for free, althuogh that's more a side-
765 * effect than anything else. The result vector may be equal to
766 * either or both source vectors, but may not otherwise overlap
767 * them.
768 */
769
770void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
771 const mpw *bv, const mpw *bvl)
772{
773 mpw c = 0;
774
775 while (av < avl || bv < bvl) {
776 mpw a, b;
777 mpd x;
778 if (dv >= dvl)
779 return;
780 a = (av < avl) ? *av++ : 0;
781 b = (bv < bvl) ? *bv++ : 0;
c8a2f9ef 782 x = (mpd)a - (mpd)b - c;
d03ab969 783 *dv++ = MPW(x);
c8a2f9ef 784 if (x >> MPW_BITS)
785 c = 1;
786 else
787 c = 0;
d03ab969 788 }
c8a2f9ef 789 if (c)
790 c = MPW_MAX;
d03ab969 791 while (dv < dvl)
c8a2f9ef 792 *dv++ = c;
d03ab969 793}
794
dd517851 795/* --- @mpx_usubn@ --- *
796 *
797 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
798 * @n@ = subtrahend
799 *
800 * Returns: ---
801 *
802 * Use: Subtracts a small integer from a multiprecision number.
803 */
804
805void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
806
f46efa79 807/* --- @mpx_uaddnlsl@ --- *
808 *
809 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
810 * @mpw a@ = second argument
811 * @unsigned o@ = offset in bits
812 *
813 * Returns: ---
814 *
815 * Use: Computes %$d + 2^o a$%. If the result overflows then
816 * high-order bits are discarded, as usual. We must have
817 * @0 < o < MPW_BITS@.
818 */
819
820void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
821{
822 mpw b = a >> (MPW_BITS - o);
823 a <<= o;
824
825 if (dv < dvl) {
c29970a7 826 mpd x = (mpd)*dv - MPW(a);
f46efa79 827 *dv++ = MPW(x);
828 if (x >> MPW_BITS)
829 b++;
830 MPX_USUBN(dv, dvl, b);
831 }
832}
833
d03ab969 834/* --- @mpx_umul@ --- *
835 *
836 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
837 * @const mpw *av, *avl@ = multiplicand vector base and limit
838 * @const mpw *bv, *bvl@ = multiplier vector base and limit
839 *
840 * Returns: ---
841 *
842 * Use: Performs unsigned integer multiplication. If the result
843 * overflows the desination vector, high-order bits are
844 * discarded. The result vector may not overlap the argument
845 * vectors in any way.
846 */
847
848void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
849 const mpw *bv, const mpw *bvl)
850{
851 /* --- This is probably worthwhile on a multiply --- */
852
853 MPX_SHRINK(av, avl);
854 MPX_SHRINK(bv, bvl);
855
856 /* --- Deal with a multiply by zero --- */
45c0fd36 857
d03ab969 858 if (bv == bvl) {
c8a2f9ef 859 MPX_ZERO(dv, dvl);
d03ab969 860 return;
861 }
862
863 /* --- Do the initial multiply and initialize the accumulator --- */
864
865 MPX_UMULN(dv, dvl, av, avl, *bv++);
866
867 /* --- Do the remaining multiply/accumulates --- */
868
c8a2f9ef 869 while (dv < dvl && bv < bvl) {
d03ab969 870 mpw m = *bv++;
c8a2f9ef 871 mpw c = 0;
d03ab969 872 const mpw *avv = av;
873 mpw *dvv = ++dv;
874
875 while (avv < avl) {
876 mpd x;
877 if (dvv >= dvl)
878 goto next;
c8a2f9ef 879 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
880 *dvv++ = MPW(x);
d03ab969 881 c = x >> MPW_BITS;
882 }
c8a2f9ef 883 MPX_UADDN(dvv, dvl, c);
d03ab969 884 next:;
885 }
886}
887
dd517851 888/* --- @mpx_umuln@ --- *
889 *
890 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
891 * @const mpw *av, *avl@ = multiplicand vector base and limit
892 * @mpw m@ = multiplier
893 *
894 * Returns: ---
895 *
896 * Use: Multiplies a multiprecision integer by a single-word value.
897 * The destination and source may be equal. The destination
898 * is completely cleared after use.
899 */
900
901void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
106b481c 902 { MPX_UMULN(dv, dvl, av, avl, m); }
dd517851 903
904/* --- @mpx_umlan@ --- *
905 *
906 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
907 * @const mpw *av, *avl@ = multiplicand vector base and limit
908 * @mpw m@ = multiplier
909 *
910 * Returns: ---
911 *
912 * Use: Multiplies a multiprecision integer by a single-word value
913 * and adds the result to an accumulator.
914 */
915
916void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
106b481c 917 { MPX_UMLAN(dv, dvl, av, avl, m); }
dd517851 918
c8a2f9ef 919/* --- @mpx_usqr@ --- *
920 *
921 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
922 * @const mpw *av, *av@ = source vector base and limit
923 *
924 * Returns: ---
925 *
926 * Use: Performs unsigned integer squaring. The result vector must
927 * not overlap the source vector in any way.
928 */
929
930void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
931{
932 MPX_ZERO(dv, dvl);
933
934 /* --- Main loop --- */
935
936 while (av < avl) {
937 const mpw *avv = av;
938 mpw *dvv = dv;
939 mpw a = *av;
940 mpd c;
941
942 /* --- Stop if I've run out of destination --- */
943
944 if (dvv >= dvl)
945 break;
946
947 /* --- Work out the square at this point in the proceedings --- */
948
949 {
c8a2f9ef 950 mpd x = (mpd)a * (mpd)a + *dvv;
951 *dvv++ = MPW(x);
952 c = MPW(x >> MPW_BITS);
953 }
954
955 /* --- Now fix up the rest of the vector upwards --- */
956
957 avv++;
958 while (dvv < dvl && avv < avl) {
c8a2f9ef 959 mpd x = (mpd)a * (mpd)*avv++;
960 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
961 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
962 *dvv++ = MPW(y);
963 }
964 while (dvv < dvl && c) {
965 mpd x = c + *dvv;
966 *dvv++ = MPW(x);
967 c = x >> MPW_BITS;
968 }
969
970 /* --- Get ready for the next round --- */
971
972 av++;
973 dv += 2;
974 }
975}
976
d03ab969 977/* --- @mpx_udiv@ --- *
978 *
979 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
980 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
981 * @const mpw *dv, *dvl@ = divisor vector base and limit
c8a2f9ef 982 * @mpw *sv, *svl@ = scratch workspace
d03ab969 983 *
984 * Returns: ---
985 *
986 * Use: Performs unsigned integer division. If the result overflows
987 * the quotient vector, high-order bits are discarded. (Clearly
988 * the remainder vector can't overflow.) The various vectors
989 * may not overlap in any way. Yes, I know it's a bit odd
990 * requiring the dividend to be in the result position but it
991 * does make some sense really. The remainder must have
c8a2f9ef 992 * headroom for at least two extra words. The scratch space
f45a00c6 993 * must be at least one word larger than the divisor.
d03ab969 994 */
995
996void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
c8a2f9ef 997 const mpw *dv, const mpw *dvl,
998 mpw *sv, mpw *svl)
d03ab969 999{
d03ab969 1000 unsigned norm = 0;
1001 size_t scale;
1002 mpw d, dd;
1003
1004 /* --- Initialize the quotient --- */
1005
1006 MPX_ZERO(qv, qvl);
1007
c8a2f9ef 1008 /* --- Perform some sanity checks --- */
1009
1010 MPX_SHRINK(dv, dvl);
1011 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1012
d03ab969 1013 /* --- Normalize the divisor --- *
1014 *
1015 * The algorithm requires that the divisor be at least two digits long.
1016 * This is easy to fix.
1017 */
1018
c8a2f9ef 1019 {
1020 unsigned b;
d03ab969 1021
c8a2f9ef 1022 d = dvl[-1];
c29970a7 1023 for (b = MPW_P2; b; b >>= 1) {
34e4f738 1024 if (d <= (MPW_MAX >> b)) {
c8a2f9ef 1025 d <<= b;
1026 norm += b;
1027 }
1028 }
1029 if (dv + 1 == dvl)
1030 norm += MPW_BITS;
d03ab969 1031 }
d03ab969 1032
1033 /* --- Normalize the dividend/remainder to match --- */
1034
c8a2f9ef 1035 if (norm) {
c8a2f9ef 1036 mpx_lsl(rv, rvl, rv, rvl, norm);
f45a00c6 1037 mpx_lsl(sv, svl, dv, dvl, norm);
c8a2f9ef 1038 dv = sv;
f45a00c6 1039 dvl = svl;
c8a2f9ef 1040 MPX_SHRINK(dv, dvl);
1041 }
1042
d03ab969 1043 MPX_SHRINK(rv, rvl);
c8a2f9ef 1044 d = dvl[-1];
1045 dd = dvl[-2];
d03ab969 1046
1047 /* --- Work out the relative scales --- */
1048
1049 {
1050 size_t rvn = rvl - rv;
c8a2f9ef 1051 size_t dvn = dvl - dv;
d03ab969 1052
1053 /* --- If the divisor is clearly larger, notice this --- */
1054
1055 if (dvn > rvn) {
1056 mpx_lsr(rv, rvl, rv, rvl, norm);
1057 return;
1058 }
1059
1060 scale = rvn - dvn;
1061 }
1062
1063 /* --- Calculate the most significant quotient digit --- *
1064 *
1065 * Because the divisor has its top bit set, this can only happen once. The
1066 * pointer arithmetic is a little contorted, to make sure that the
1067 * behaviour is defined.
1068 */
1069
1070 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1071 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1072 if (qvl - qv > scale)
1073 qv[scale] = 1;
1074 }
1075
1076 /* --- Now for the main loop --- */
1077
1078 {
c8a2f9ef 1079 mpw *rvv = rvl - 2;
d03ab969 1080
1081 while (scale) {
c8a2f9ef 1082 mpw q;
1083 mpd rh;
d03ab969 1084
1085 /* --- Get an estimate for the next quotient digit --- */
1086
c8a2f9ef 1087 mpw r = rvv[1];
1088 mpw rr = rvv[0];
1089 mpw rrr = *--rvv;
1090
1091 scale--;
1092 rh = ((mpd)r << MPW_BITS) | rr;
d03ab969 1093 if (r == d)
1094 q = MPW_MAX;
c8a2f9ef 1095 else
1096 q = MPW(rh / d);
d03ab969 1097
1098 /* --- Refine the estimate --- */
1099
1100 {
1101 mpd yh = (mpd)d * q;
ce76ff16 1102 mpd yy = (mpd)dd * q;
1103 mpw yl;
c8a2f9ef 1104
ce76ff16 1105 if (yy > MPW_MAX)
1106 yh += yy >> MPW_BITS;
1107 yl = MPW(yy);
c8a2f9ef 1108
1109 while (yh > rh || (yh == rh && yl > rrr)) {
1110 q--;
1111 yh -= d;
ce76ff16 1112 if (yl < dd)
1113 yh--;
99b30c23 1114 yl = MPW(yl - dd);
c8a2f9ef 1115 }
1116 }
1117
1118 /* --- Remove a chunk from the dividend --- */
1119
1120 {
1121 mpw *svv;
1122 const mpw *dvv;
f45a00c6 1123 mpw mc = 0, sc = 0;
c8a2f9ef 1124
f45a00c6 1125 /* --- Calculate the size of the chunk --- *
1126 *
1127 * This does the whole job of calculating @r >> scale - qd@.
1128 */
c8a2f9ef 1129
f45a00c6 1130 for (svv = rv + scale, dvv = dv;
1131 dvv < dvl && svv < rvl;
1132 svv++, dvv++) {
1133 mpd x = (mpd)*dvv * (mpd)q + mc;
1134 mc = x >> MPW_BITS;
1135 x = (mpd)*svv - MPW(x) - sc;
c8a2f9ef 1136 *svv = MPW(x);
f45a00c6 1137 if (x >> MPW_BITS)
1138 sc = 1;
1139 else
1140 sc = 0;
1141 }
1142
1143 if (svv < rvl) {
1144 mpd x = (mpd)*svv - mc - sc;
1145 *svv++ = MPW(x);
1146 if (x >> MPW_BITS)
1147 sc = MPW_MAX;
1148 else
1149 sc = 0;
1150 while (svv < rvl)
1151 *svv++ = sc;
c8a2f9ef 1152 }
c8a2f9ef 1153
f45a00c6 1154 /* --- Fix if the quotient was too large --- *
c8a2f9ef 1155 *
f45a00c6 1156 * This doesn't seem to happen very often.
c8a2f9ef 1157 */
1158
c8a2f9ef 1159 if (rvl[-1] > MPW_MAX / 2) {
1160 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1161 q--;
1162 }
1163 }
1164
1165 /* --- Done for another iteration --- */
1166
1167 if (qvl - qv > scale)
1168 qv[scale] = q;
1169 r = rr;
1170 rr = rrr;
1171 }
1172 }
1173
1174 /* --- Now fiddle with unnormalizing and things --- */
1175
1176 mpx_lsr(rv, rvl, rv, rvl, norm);
d03ab969 1177}
1178
698bd937 1179/* --- @mpx_udivn@ --- *
1180 *
1181 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1182 * dividend)
1183 * @const mpw *rv, *rvl@ = dividend
1184 * @mpw d@ = single-precision divisor
1185 *
1186 * Returns: Remainder after divison.
1187 *
1188 * Use: Performs a single-precision division operation.
1189 */
1190
1191mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1192{
1193 size_t i;
1194 size_t ql = qvl - qv;
1195 mpd r = 0;
1196
1197 i = rvl - rv;
1198 while (i > 0) {
1199 i--;
1200 r = (r << MPW_BITS) | rv[i];
1201 if (i < ql)
1202 qv[i] = r / d;
1203 r %= d;
1204 }
1205 return (MPW(r));
1206}
1207
42684bdb 1208/*----- Test rig ----------------------------------------------------------*/
1209
1210#ifdef TEST_RIG
1211
1212#include <mLib/alloc.h>
1213#include <mLib/dstr.h>
1214#include <mLib/quis.h>
1215#include <mLib/testrig.h>
1216
1217#include "mpscan.h"
1218
1219#define ALLOC(v, vl, sz) do { \
1220 size_t _sz = (sz); \
1221 mpw *_vv = xmalloc(MPWS(_sz)); \
1222 mpw *_vvl = _vv + _sz; \
1223 (v) = _vv; \
1224 (vl) = _vvl; \
1225} while (0)
1226
1227#define LOAD(v, vl, d) do { \
1228 const dstr *_d = (d); \
1229 mpw *_v, *_vl; \
1230 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1231 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1232 (v) = _v; \
1233 (vl) = _vl; \
1234} while (0)
1235
1236#define MAX(x, y) ((x) > (y) ? (x) : (y))
45c0fd36 1237
42684bdb 1238static void dumpbits(const char *msg, const void *pp, size_t sz)
1239{
1240 const octet *p = pp;
1241 fputs(msg, stderr);
1242 for (; sz; sz--)
1243 fprintf(stderr, " %02x", *p++);
1244 fputc('\n', stderr);
1245}
1246
1247static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1248{
1249 fputs(msg, stderr);
1250 MPX_SHRINK(v, vl);
1251 while (v < vl)
1252 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1253 fputc('\n', stderr);
1254}
1255
1256static int chkscan(const mpw *v, const mpw *vl,
1257 const void *pp, size_t sz, int step)
1258{
1259 mpscan mps;
1260 const octet *p = pp;
1261 unsigned bit = 0;
1262 int ok = 1;
1263
1264 mpscan_initx(&mps, v, vl);
1265 while (sz) {
1266 unsigned x = *p;
1267 int i;
1268 p += step;
1269 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1270 if (MPSCAN_BIT(&mps) != (x & 1)) {
1271 fprintf(stderr,
1272 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1273 step, bit, x & 1, MPSCAN_BIT(&mps));
1274 ok = 0;
1275 }
1276 x >>= 1;
1277 bit++;
1278 }
1279 sz--;
1280 }
1281
1282 return (ok);
1283}
1284
1285static int loadstore(dstr *v)
1286{
1287 dstr d = DSTR_INIT;
1288 size_t sz = MPW_RQ(v->len) * 2, diff;
1289 mpw *m, *ml;
1290 int ok = 1;
1291
1292 dstr_ensure(&d, v->len);
1293 m = xmalloc(MPWS(sz));
1294
1295 for (diff = 0; diff < sz; diff += 5) {
1296 size_t oct;
1297
1298 ml = m + sz - diff;
1299
1300 mpx_loadl(m, ml, v->buf, v->len);
1301 if (!chkscan(m, ml, v->buf, v->len, +1))
1302 ok = 0;
1303 MPX_OCTETS(oct, m, ml);
1304 mpx_storel(m, ml, d.buf, d.sz);
1305 if (memcmp(d.buf, v->buf, oct) != 0) {
1306 dumpbits("\n*** storel failed", d.buf, d.sz);
1307 ok = 0;
1308 }
1309
1310 mpx_loadb(m, ml, v->buf, v->len);
1311 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1312 ok = 0;
1313 MPX_OCTETS(oct, m, ml);
1314 mpx_storeb(m, ml, d.buf, d.sz);
1315 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1316 dumpbits("\n*** storeb failed", d.buf, d.sz);
1317 ok = 0;
1318 }
1319 }
1320
1321 if (!ok)
1322 dumpbits("input data", v->buf, v->len);
1323
12ed8a1f 1324 xfree(m);
42684bdb 1325 dstr_destroy(&d);
1326 return (ok);
1327}
1328
f09e814a 1329static int twocl(dstr *v)
1330{
1331 dstr d = DSTR_INIT;
1332 mpw *m, *ml;
1333 size_t sz;
1334 int ok = 1;
1335
1336 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1337 dstr_ensure(&d, sz);
1338
1339 sz = MPW_RQ(sz);
1340 m = xmalloc(MPWS(sz));
1341 ml = m + sz;
1342
1343 mpx_loadl(m, ml, v[0].buf, v[0].len);
1344 mpx_storel2cn(m, ml, d.buf, v[1].len);
1345 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1346 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1347 ok = 0;
1348 }
1349
1350 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1351 mpx_storel(m, ml, d.buf, v[0].len);
1352 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1353 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1354 ok = 0;
1355 }
1356
1357 if (!ok) {
1358 dumpbits("pos", v[0].buf, v[0].len);
1359 dumpbits("neg", v[1].buf, v[1].len);
1360 }
1361
12ed8a1f 1362 xfree(m);
f09e814a 1363 dstr_destroy(&d);
1364
1365 return (ok);
1366}
1367
1368static int twocb(dstr *v)
1369{
1370 dstr d = DSTR_INIT;
1371 mpw *m, *ml;
1372 size_t sz;
1373 int ok = 1;
1374
1375 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1376 dstr_ensure(&d, sz);
1377
1378 sz = MPW_RQ(sz);
1379 m = xmalloc(MPWS(sz));
1380 ml = m + sz;
1381
1382 mpx_loadb(m, ml, v[0].buf, v[0].len);
1383 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1384 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1385 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1386 ok = 0;
1387 }
1388
1389 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1390 mpx_storeb(m, ml, d.buf, v[0].len);
1391 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1392 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1393 ok = 0;
1394 }
1395
1396 if (!ok) {
1397 dumpbits("pos", v[0].buf, v[0].len);
1398 dumpbits("neg", v[1].buf, v[1].len);
1399 }
1400
12ed8a1f 1401 xfree(m);
f09e814a 1402 dstr_destroy(&d);
1403
1404 return (ok);
1405}
1406
42684bdb 1407static int lsl(dstr *v)
1408{
1409 mpw *a, *al;
1410 int n = *(int *)v[1].buf;
1411 mpw *c, *cl;
1412 mpw *d, *dl;
1413 int ok = 1;
1414
1415 LOAD(a, al, &v[0]);
1416 LOAD(c, cl, &v[2]);
1417 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1418
1419 mpx_lsl(d, dl, a, al, n);
1a05a8ef 1420 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1421 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
45c0fd36 1422 dumpmp(" a", a, al);
42684bdb 1423 dumpmp("expected", c, cl);
1424 dumpmp(" result", d, dl);
1425 ok = 0;
1426 }
1427
12ed8a1f 1428 xfree(a); xfree(c); xfree(d);
42684bdb 1429 return (ok);
1430}
1431
81578196 1432static int lslc(dstr *v)
1433{
1434 mpw *a, *al;
1435 int n = *(int *)v[1].buf;
1436 mpw *c, *cl;
1437 mpw *d, *dl;
1438 int ok = 1;
1439
1440 LOAD(a, al, &v[0]);
1441 LOAD(c, cl, &v[2]);
1442 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1443
1444 mpx_lslc(d, dl, a, al, n);
1445 if (!mpx_ueq(d, dl, c, cl)) {
1446 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
45c0fd36 1447 dumpmp(" a", a, al);
81578196 1448 dumpmp("expected", c, cl);
1449 dumpmp(" result", d, dl);
1450 ok = 0;
1451 }
1452
12ed8a1f 1453 xfree(a); xfree(c); xfree(d);
81578196 1454 return (ok);
1455}
1456
42684bdb 1457static int lsr(dstr *v)
1458{
1459 mpw *a, *al;
1460 int n = *(int *)v[1].buf;
1461 mpw *c, *cl;
1462 mpw *d, *dl;
1463 int ok = 1;
1464
1465 LOAD(a, al, &v[0]);
1466 LOAD(c, cl, &v[2]);
1467 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1468
1469 mpx_lsr(d, dl, a, al, n);
1a05a8ef 1470 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1471 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
45c0fd36 1472 dumpmp(" a", a, al);
42684bdb 1473 dumpmp("expected", c, cl);
1474 dumpmp(" result", d, dl);
1475 ok = 0;
1476 }
1477
12ed8a1f 1478 xfree(a); xfree(c); xfree(d);
42684bdb 1479 return (ok);
1480}
1481
1482static int uadd(dstr *v)
1483{
1484 mpw *a, *al;
1485 mpw *b, *bl;
1486 mpw *c, *cl;
1487 mpw *d, *dl;
1488 int ok = 1;
1489
1490 LOAD(a, al, &v[0]);
1491 LOAD(b, bl, &v[1]);
1492 LOAD(c, cl, &v[2]);
1493 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1494
1495 mpx_uadd(d, dl, a, al, b, bl);
1a05a8ef 1496 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1497 fprintf(stderr, "\n*** uadd failed\n");
45c0fd36
MW
1498 dumpmp(" a", a, al);
1499 dumpmp(" b", b, bl);
42684bdb 1500 dumpmp("expected", c, cl);
1501 dumpmp(" result", d, dl);
1502 ok = 0;
1503 }
1504
12ed8a1f 1505 xfree(a); xfree(b); xfree(c); xfree(d);
42684bdb 1506 return (ok);
1507}
1508
1509static int usub(dstr *v)
1510{
1511 mpw *a, *al;
1512 mpw *b, *bl;
1513 mpw *c, *cl;
1514 mpw *d, *dl;
1515 int ok = 1;
1516
1517 LOAD(a, al, &v[0]);
1518 LOAD(b, bl, &v[1]);
1519 LOAD(c, cl, &v[2]);
1520 ALLOC(d, dl, al - a);
1521
1522 mpx_usub(d, dl, a, al, b, bl);
1a05a8ef 1523 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1524 fprintf(stderr, "\n*** usub failed\n");
45c0fd36
MW
1525 dumpmp(" a", a, al);
1526 dumpmp(" b", b, bl);
42684bdb 1527 dumpmp("expected", c, cl);
1528 dumpmp(" result", d, dl);
1529 ok = 0;
1530 }
1531
12ed8a1f 1532 xfree(a); xfree(b); xfree(c); xfree(d);
42684bdb 1533 return (ok);
1534}
1535
1536static int umul(dstr *v)
1537{
1538 mpw *a, *al;
1539 mpw *b, *bl;
1540 mpw *c, *cl;
1541 mpw *d, *dl;
1542 int ok = 1;
1543
1544 LOAD(a, al, &v[0]);
1545 LOAD(b, bl, &v[1]);
1546 LOAD(c, cl, &v[2]);
1547 ALLOC(d, dl, (al - a) + (bl - b));
1548
1549 mpx_umul(d, dl, a, al, b, bl);
1a05a8ef 1550 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1551 fprintf(stderr, "\n*** umul failed\n");
45c0fd36
MW
1552 dumpmp(" a", a, al);
1553 dumpmp(" b", b, bl);
42684bdb 1554 dumpmp("expected", c, cl);
1555 dumpmp(" result", d, dl);
1556 ok = 0;
1557 }
1558
12ed8a1f 1559 xfree(a); xfree(b); xfree(c); xfree(d);
42684bdb 1560 return (ok);
1561}
1562
1563static int usqr(dstr *v)
1564{
1565 mpw *a, *al;
1566 mpw *c, *cl;
1567 mpw *d, *dl;
1568 int ok = 1;
1569
1570 LOAD(a, al, &v[0]);
1571 LOAD(c, cl, &v[1]);
1572 ALLOC(d, dl, 2 * (al - a));
1573
1574 mpx_usqr(d, dl, a, al);
1a05a8ef 1575 if (!mpx_ueq(d, dl, c, cl)) {
42684bdb 1576 fprintf(stderr, "\n*** usqr failed\n");
45c0fd36 1577 dumpmp(" a", a, al);
42684bdb 1578 dumpmp("expected", c, cl);
1579 dumpmp(" result", d, dl);
1580 ok = 0;
1581 }
1582
12ed8a1f 1583 xfree(a); xfree(c); xfree(d);
42684bdb 1584 return (ok);
1585}
1586
1587static int udiv(dstr *v)
1588{
1589 mpw *a, *al;
1590 mpw *b, *bl;
1591 mpw *q, *ql;
1592 mpw *r, *rl;
1593 mpw *qq, *qql;
1594 mpw *s, *sl;
1595 int ok = 1;
1596
1597 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1598 LOAD(b, bl, &v[1]);
1599 LOAD(q, ql, &v[2]);
1600 LOAD(r, rl, &v[3]);
1601 ALLOC(qq, qql, al - a);
1602 ALLOC(s, sl, (bl - b) + 1);
1603
1604 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1a05a8ef 1605 if (!mpx_ueq(qq, qql, q, ql) ||
1606 !mpx_ueq(a, al, r, rl)) {
42684bdb 1607 fprintf(stderr, "\n*** udiv failed\n");
1608 dumpmp(" divisor", b, bl);
1609 dumpmp("expect r", r, rl);
1610 dumpmp("result r", a, al);
1611 dumpmp("expect q", q, ql);
1612 dumpmp("result q", qq, qql);
1613 ok = 0;
1614 }
1615
12ed8a1f 1616 xfree(a); xfree(b); xfree(r); xfree(q); xfree(s); xfree(qq);
42684bdb 1617 return (ok);
1618}
1619
1620static test_chunk defs[] = {
1621 { "load-store", loadstore, { &type_hex, 0 } },
f09e814a 1622 { "2cl", twocl, { &type_hex, &type_hex, } },
1623 { "2cb", twocb, { &type_hex, &type_hex, } },
42684bdb 1624 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
81578196 1625 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
42684bdb 1626 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1627 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1628 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1629 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1630 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1631 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1632 { 0, 0, { 0 } }
1633};
1634
1635int main(int argc, char *argv[])
1636{
0f00dc4c 1637 test_run(argc, argv, defs, SRCDIR"/t/mpx");
42684bdb 1638 return (0);
1639}
1640
42684bdb 1641#endif
1642
d03ab969 1643/*----- That's all, folks -------------------------------------------------*/