X-Git-Url: https://git.distorted.org.uk/u/mdw/putty/blobdiff_plain/7cca0d811c4d1b5bb346cd60fdfa461a558aefec..0016d70b76e2706064b54c9dd24d45a45646b0de:/sshbn.c diff --git a/sshbn.c b/sshbn.c index 97ae3575..d32eb1bb 100644 --- a/sshbn.c +++ b/sshbn.c @@ -3,44 +3,102 @@ */ #include +#include #include #include -#include /* FIXME */ -#include /* FIXME */ -#include /* FIXME */ -#include "putty.h" /* FIXME */ +#include "misc.h" + +#if defined __GNUC__ && defined __i386__ +typedef unsigned long BignumInt; +typedef unsigned long long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFFFFFUL +#define BIGNUM_TOP_BIT 0x80000000UL +#define BIGNUM_INT_BITS 32 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) \ + __asm__("div %2" : \ + "=d" (r), "=a" (q) : \ + "r" (w), "d" (hi), "a" (lo)) +#else +typedef unsigned short BignumInt; +typedef unsigned long BignumDblInt; +#define BIGNUM_INT_MASK 0xFFFFU +#define BIGNUM_TOP_BIT 0x8000U +#define BIGNUM_INT_BITS 16 +#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) +#define DIVMOD_WORD(q, r, hi, lo, w) do { \ + BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ + q = n / w; \ + r = n % w; \ +} while (0) +#endif + +#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8) + +#define BIGNUM_INTERNAL +typedef BignumInt *Bignum; #include "ssh.h" -unsigned short bnZero[1] = { 0 }; -unsigned short bnOne[2] = { 1, 1 }; +BignumInt bnZero[1] = { 0 }; +BignumInt bnOne[2] = { 1, 1 }; + +/* + * The Bignum format is an array of `BignumInt'. The first + * element of the array counts the remaining elements. The + * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_ + * significant digit first. (So it's trivial to extract the bit + * with value 2^n for any n.) + * + * All Bignums in this module are positive. Negative numbers must + * be dealt with outside it. + * + * INVARIANT: the most significant word of any Bignum must be + * nonzero. + */ Bignum Zero = bnZero, One = bnOne; -Bignum newbn(int length) { - Bignum b = malloc((length+1)*sizeof(unsigned short)); +static Bignum newbn(int length) +{ + Bignum b = snewn(length + 1, BignumInt); if (!b) abort(); /* FIXME */ - memset(b, 0, (length+1)*sizeof(*b)); + memset(b, 0, (length + 1) * sizeof(*b)); b[0] = length; return b; } -Bignum copybn(Bignum orig) { - Bignum b = malloc((orig[0]+1)*sizeof(unsigned short)); +void bn_restore_invariant(Bignum b) +{ + while (b[0] > 1 && b[b[0]] == 0) + b[0]--; +} + +Bignum copybn(Bignum orig) +{ + Bignum b = snewn(orig[0] + 1, BignumInt); if (!b) abort(); /* FIXME */ - memcpy(b, orig, (orig[0]+1)*sizeof(*b)); + memcpy(b, orig, (orig[0] + 1) * sizeof(*b)); return b; } -void freebn(Bignum b) { +void freebn(Bignum b) +{ /* * Burn the evidence, just in case. */ memset(b, 0, sizeof(b[0]) * (b[0] + 1)); - free(b); + sfree(b); +} + +Bignum bn_power_2(int n) +{ + Bignum ret = newbn(n / BIGNUM_INT_BITS + 1); + bignum_set_bit(ret, n, 1); + return ret; } /* @@ -48,185 +106,244 @@ void freebn(Bignum b) { * Input is in the first len words of a and b. * Result is returned in the first 2*len words of c. */ -static void bigmul(unsigned short *a, unsigned short *b, unsigned short *c, - int len) +static void internal_mul(BignumInt *a, BignumInt *b, + BignumInt *c, int len) { int i, j; - unsigned long ai, t; + BignumDblInt t; - for (j = len - 1; j >= 0; j--) - c[j+len] = 0; + for (j = 0; j < 2 * len; j++) + c[j] = 0; for (i = len - 1; i >= 0; i--) { - ai = a[i]; t = 0; for (j = len - 1; j >= 0; j--) { - t += ai * (unsigned long) b[j]; - t += (unsigned long) c[i+j+1]; - c[i+j+1] = (unsigned short)t; - t = t >> 16; + t += MUL_WORD(a[i], (BignumDblInt) b[j]); + t += (BignumDblInt) c[i + j + 1]; + c[i + j + 1] = (BignumInt) t; + t = t >> BIGNUM_INT_BITS; } - c[i] = (unsigned short)t; + c[i] = (BignumInt) t; + } +} + +static void internal_add_shifted(BignumInt *number, + unsigned n, int shift) +{ + int word = 1 + (shift / BIGNUM_INT_BITS); + int bshift = shift % BIGNUM_INT_BITS; + BignumDblInt addend; + + addend = (BignumDblInt)n << bshift; + + while (addend) { + addend += number[word]; + number[word] = (BignumInt) addend & BIGNUM_INT_MASK; + addend >>= BIGNUM_INT_BITS; + word++; } } /* * Compute a = a % m. - * Input in first len2 words of a and first len words of m. - * Output in first len2 words of a - * (of which first len2-len words will be zero). + * Input in first alen words of a and first mlen words of m. + * Output in first alen words of a + * (of which first alen-mlen words will be zero). * The MSW of m MUST have its high bit set. + * Quotient is accumulated in the `quotient' array, which is a Bignum + * rather than the internal bigendian format. Quotient parts are shifted + * left by `qshift' before adding into quot. */ -static void bigmod(unsigned short *a, unsigned short *m, - int len, int len2) +static void internal_mod(BignumInt *a, int alen, + BignumInt *m, int mlen, + BignumInt *quot, int qshift) { - unsigned short m0, m1; + BignumInt m0, m1; unsigned int h; int i, k; - /* Special case for len == 1 */ - if (len == 1) { - a[1] = (((long) a[0] << 16) + a[1]) % m[0]; - a[0] = 0; - return; - } - m0 = m[0]; - m1 = m[1]; + if (mlen > 1) + m1 = m[1]; + else + m1 = 0; - for (i = 0; i <= len2-len; i++) { - unsigned long t; - unsigned int q, r, c; + for (i = 0; i <= alen - mlen; i++) { + BignumDblInt t; + unsigned int q, r, c, ai1; if (i == 0) { h = 0; } else { - h = a[i-1]; - a[i-1] = 0; + h = a[i - 1]; + a[i - 1] = 0; } + if (i == alen - 1) + ai1 = 0; + else + ai1 = a[i + 1]; + /* Find q = h:a[i] / m0 */ - t = ((unsigned long) h << 16) + a[i]; - q = t / m0; - r = t % m0; + DIVMOD_WORD(q, r, h, a[i], m0); /* Refine our estimate of q by looking at - h:a[i]:a[i+1] / m0:m1 */ - t = (long) m1 * (long) q; - if (t > ((unsigned long) r << 16) + a[i+1]) { + h:a[i]:a[i+1] / m0:m1 */ + t = MUL_WORD(m1, q); + if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) { q--; t -= m1; - r = (r + m0) & 0xffff; /* overflow? */ - if (r >= (unsigned long)m0 && - t > ((unsigned long) r << 16) + a[i+1]) - q--; + r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */ + if (r >= (BignumDblInt) m0 && + t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--; } - /* Substract q * m from a[i...] */ + /* Subtract q * m from a[i...] */ c = 0; - for (k = len - 1; k >= 0; k--) { - t = (long) q * (long) m[k]; + for (k = mlen - 1; k >= 0; k--) { + t = MUL_WORD(q, m[k]); t += c; - c = t >> 16; - if ((unsigned short) t > a[i+k]) c++; - a[i+k] -= (unsigned short) t; + c = t >> BIGNUM_INT_BITS; + if ((BignumInt) t > a[i + k]) + c++; + a[i + k] -= (BignumInt) t; } /* Add back m in case of borrow */ if (c != h) { t = 0; - for (k = len - 1; k >= 0; k--) { + for (k = mlen - 1; k >= 0; k--) { t += m[k]; - t += a[i+k]; - a[i+k] = (unsigned short)t; - t = t >> 16; + t += a[i + k]; + a[i + k] = (BignumInt) t; + t = t >> BIGNUM_INT_BITS; } + q--; } + if (quot) + internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i)); } } /* * Compute (base ^ exp) % mod. - * The base MUST be smaller than the modulus. - * The most significant word of mod MUST be non-zero. - * We assume that the result array is the same size as the mod array. */ -void modpow(Bignum base, Bignum exp, Bignum mod, Bignum result) +Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) { - unsigned short *a, *b, *n, *m; + BignumInt *a, *b, *n, *m; int mshift; int mlen, i, j; + Bignum base, result; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* + * Make sure the base is smaller than the modulus, by reducing + * it modulo the modulus if not. + */ + base = bigmod(base_in, mod); /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; - m = malloc(mlen * sizeof(unsigned short)); - for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; /* Shift m left to make msb bit set */ - for (mshift = 0; mshift < 15; mshift++) - if ((m[0] << mshift) & 0x8000) break; + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; if (mshift) { for (i = 0; i < mlen - 1; i++) - m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift)); - m[mlen-1] = m[mlen-1] << mshift; + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; } /* Allocate n of size mlen, copy base to n */ - n = malloc(mlen * sizeof(unsigned short)); + n = snewn(mlen, BignumInt); i = mlen - base[0]; - for (j = 0; j < i; j++) n[j] = 0; - for (j = 0; j < base[0]; j++) n[i+j] = base[base[0] - j]; + for (j = 0; j < i; j++) + n[j] = 0; + for (j = 0; j < base[0]; j++) + n[i + j] = base[base[0] - j]; /* Allocate a and b of size 2*mlen. Set a = 1 */ - a = malloc(2 * mlen * sizeof(unsigned short)); - b = malloc(2 * mlen * sizeof(unsigned short)); - for (i = 0; i < 2*mlen; i++) a[i] = 0; - a[2*mlen-1] = 1; + a = snewn(2 * mlen, BignumInt); + b = snewn(2 * mlen, BignumInt); + for (i = 0; i < 2 * mlen; i++) + a[i] = 0; + a[2 * mlen - 1] = 1; /* Skip leading zero bits of exp. */ - i = 0; j = 15; + i = 0; + j = BIGNUM_INT_BITS-1; while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { j--; - if (j < 0) { i++; j = 15; } + if (j < 0) { + i++; + j = BIGNUM_INT_BITS-1; + } } /* Main computation */ while (i < exp[0]) { while (j >= 0) { - bigmul(a + mlen, a + mlen, b, mlen); - bigmod(b, m, mlen, mlen*2); + internal_mul(a + mlen, a + mlen, b, mlen); + internal_mod(b, mlen * 2, m, mlen, NULL, 0); if ((exp[exp[0] - i] & (1 << j)) != 0) { - bigmul(b + mlen, n, a, mlen); - bigmod(a, m, mlen, mlen*2); + internal_mul(b + mlen, n, a, mlen); + internal_mod(a, mlen * 2, m, mlen, NULL, 0); } else { - unsigned short *t; - t = a; a = b; b = t; + BignumInt *t; + t = a; + a = b; + b = t; } j--; } - i++; j = 15; + i++; + j = BIGNUM_INT_BITS-1; } /* Fixup result in case the modulus was shifted */ if (mshift) { - for (i = mlen - 1; i < 2*mlen - 1; i++) - a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift)); - a[2*mlen-1] = a[2*mlen-1] << mshift; - bigmod(a, m, mlen, mlen*2); - for (i = 2*mlen - 1; i >= mlen; i--) - a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift)); + for (i = mlen - 1; i < 2 * mlen - 1; i++) + a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift)); + a[2 * mlen - 1] = a[2 * mlen - 1] << mshift; + internal_mod(a, mlen * 2, m, mlen, NULL, 0); + for (i = 2 * mlen - 1; i >= mlen; i--) + a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift)); } /* Copy result to buffer */ + result = newbn(mod[0]); for (i = 0; i < mlen; i++) - result[result[0] - i] = a[i+mlen]; + result[result[0] - i] = a[i + mlen]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; /* Free temporary arrays */ - for (i = 0; i < 2*mlen; i++) a[i] = 0; free(a); - for (i = 0; i < 2*mlen; i++) b[i] = 0; free(b); - for (i = 0; i < mlen; i++) m[i] = 0; free(m); - for (i = 0; i < mlen; i++) n[i] = 0; free(n); + for (i = 0; i < 2 * mlen; i++) + a[i] = 0; + sfree(a); + for (i = 0; i < 2 * mlen; i++) + b[i] = 0; + sfree(b); + for (i = 0; i < mlen; i++) + m[i] = 0; + sfree(m); + for (i = 0; i < mlen; i++) + n[i] = 0; + sfree(n); + + freebn(base); + + return result; } /* @@ -234,109 +351,684 @@ void modpow(Bignum base, Bignum exp, Bignum mod, Bignum result) * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. */ -void modmul(Bignum p, Bignum q, Bignum mod, Bignum result) +Bignum modmul(Bignum p, Bignum q, Bignum mod) { - unsigned short *a, *n, *m, *o; + BignumInt *a, *n, *m, *o; int mshift; - int pqlen, mlen, i, j; + int pqlen, mlen, rlen, i, j; + Bignum result; /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; - m = malloc(mlen * sizeof(unsigned short)); - for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; /* Shift m left to make msb bit set */ - for (mshift = 0; mshift < 15; mshift++) - if ((m[0] << mshift) & 0x8000) break; + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; if (mshift) { for (i = 0; i < mlen - 1; i++) - m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift)); - m[mlen-1] = m[mlen-1] << mshift; + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; } pqlen = (p[0] > q[0] ? p[0] : q[0]); /* Allocate n of size pqlen, copy p to n */ - n = malloc(pqlen * sizeof(unsigned short)); + n = snewn(pqlen, BignumInt); i = pqlen - p[0]; - for (j = 0; j < i; j++) n[j] = 0; - for (j = 0; j < p[0]; j++) n[i+j] = p[p[0] - j]; + for (j = 0; j < i; j++) + n[j] = 0; + for (j = 0; j < p[0]; j++) + n[i + j] = p[p[0] - j]; /* Allocate o of size pqlen, copy q to o */ - o = malloc(pqlen * sizeof(unsigned short)); + o = snewn(pqlen, BignumInt); i = pqlen - q[0]; - for (j = 0; j < i; j++) o[j] = 0; - for (j = 0; j < q[0]; j++) o[i+j] = q[q[0] - j]; + for (j = 0; j < i; j++) + o[j] = 0; + for (j = 0; j < q[0]; j++) + o[i + j] = q[q[0] - j]; /* Allocate a of size 2*pqlen for result */ - a = malloc(2 * pqlen * sizeof(unsigned short)); + a = snewn(2 * pqlen, BignumInt); /* Main computation */ - bigmul(n, o, a, pqlen); - bigmod(a, m, mlen, 2*pqlen); + internal_mul(n, o, a, pqlen); + internal_mod(a, pqlen * 2, m, mlen, NULL, 0); /* Fixup result in case the modulus was shifted */ if (mshift) { - for (i = 2*pqlen - mlen - 1; i < 2*pqlen - 1; i++) - a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift)); - a[2*pqlen-1] = a[2*pqlen-1] << mshift; - bigmod(a, m, mlen, pqlen*2); - for (i = 2*pqlen - 1; i >= 2*pqlen - mlen; i--) - a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift)); + for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++) + a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift)); + a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift; + internal_mod(a, pqlen * 2, m, mlen, NULL, 0); + for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--) + a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift)); } /* Copy result to buffer */ + rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2); + result = newbn(rlen); + for (i = 0; i < rlen; i++) + result[result[0] - i] = a[i + 2 * pqlen - rlen]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + + /* Free temporary arrays */ + for (i = 0; i < 2 * pqlen; i++) + a[i] = 0; + sfree(a); for (i = 0; i < mlen; i++) - result[result[0] - i] = a[i+2*pqlen-mlen]; + m[i] = 0; + sfree(m); + for (i = 0; i < pqlen; i++) + n[i] = 0; + sfree(n); + for (i = 0; i < pqlen; i++) + o[i] = 0; + sfree(o); + + return result; +} + +/* + * Compute p % mod. + * The most significant word of mod MUST be non-zero. + * We assume that the result array is the same size as the mod array. + * We optionally write out a quotient if `quotient' is non-NULL. + * We can avoid writing out the result if `result' is NULL. + */ +static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient) +{ + BignumInt *n, *m; + int mshift; + int plen, mlen, i, j; + + /* Allocate m of size mlen, copy mod to m */ + /* We use big endian internally */ + mlen = mod[0]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; + + /* Shift m left to make msb bit set */ + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; + if (mshift) { + for (i = 0; i < mlen - 1; i++) + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; + } + + plen = p[0]; + /* Ensure plen > mlen */ + if (plen <= mlen) + plen = mlen + 1; + + /* Allocate n of size plen, copy p to n */ + n = snewn(plen, BignumInt); + for (j = 0; j < plen; j++) + n[j] = 0; + for (j = 1; j <= p[0]; j++) + n[plen - j] = p[j]; + + /* Main computation */ + internal_mod(n, plen, m, mlen, quotient, mshift); + + /* Fixup result in case the modulus was shifted */ + if (mshift) { + for (i = plen - mlen - 1; i < plen - 1; i++) + n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift)); + n[plen - 1] = n[plen - 1] << mshift; + internal_mod(n, plen, m, mlen, quotient, 0); + for (i = plen - 1; i >= plen - mlen; i--) + n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift)); + } + + /* Copy result to buffer */ + if (result) { + for (i = 1; i <= result[0]; i++) { + int j = plen - i; + result[i] = j >= 0 ? n[j] : 0; + } + } /* Free temporary arrays */ - for (i = 0; i < 2*pqlen; i++) a[i] = 0; free(a); - for (i = 0; i < mlen; i++) m[i] = 0; free(m); - for (i = 0; i < pqlen; i++) n[i] = 0; free(n); - for (i = 0; i < pqlen; i++) o[i] = 0; free(o); + for (i = 0; i < mlen; i++) + m[i] = 0; + sfree(m); + for (i = 0; i < plen; i++) + n[i] = 0; + sfree(n); } /* * Decrement a number. */ -void decbn(Bignum bn) { +void decbn(Bignum bn) +{ int i = 1; while (i < bn[0] && bn[i] == 0) - bn[i++] = 0xFFFF; + bn[i++] = BIGNUM_INT_MASK; bn[i]--; } +Bignum bignum_from_bytes(const unsigned char *data, int nbytes) +{ + Bignum result; + int w, i; + + w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */ + + result = newbn(w); + for (i = 1; i <= w; i++) + result[i] = 0; + for (i = nbytes; i--;) { + unsigned char byte = *data++; + result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS); + } + + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + return result; +} + /* * Read an ssh1-format bignum from a data buffer. Return the number - * of bytes consumed. + * of bytes consumed, or -1 if there wasn't enough data. */ -int ssh1_read_bignum(unsigned char *data, Bignum *result) { - unsigned char *p = data; - Bignum bn; +int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result) +{ + const unsigned char *p = data; int i; int w, b; + if (len < 2) + return -1; + w = 0; - for (i=0; i<2; i++) - w = (w << 8) + *p++; - - b = (w+7)/8; /* bits -> bytes */ - w = (w+15)/16; /* bits -> words */ - - bn = newbn(w); - - for (i=1; i<=w; i++) - bn[i] = 0; - for (i=b; i-- ;) { - unsigned char byte = *p++; - if (i & 1) - bn[1+i/2] |= byte<<8; - else - bn[1+i/2] |= byte; + for (i = 0; i < 2; i++) + w = (w << 8) + *p++; + b = (w + 7) / 8; /* bits -> bytes */ + + if (len < b+2) + return -1; + + if (!result) /* just return length */ + return b + 2; + + *result = bignum_from_bytes(p, b); + + return p + b - data; +} + +/* + * Return the bit count of a bignum, for ssh1 encoding. + */ +int bignum_bitcount(Bignum bn) +{ + int bitcount = bn[0] * BIGNUM_INT_BITS - 1; + while (bitcount >= 0 + && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--; + return bitcount + 1; +} + +/* + * Return the byte length of a bignum when ssh1 encoded. + */ +int ssh1_bignum_length(Bignum bn) +{ + return 2 + (bignum_bitcount(bn) + 7) / 8; +} + +/* + * Return the byte length of a bignum when ssh2 encoded. + */ +int ssh2_bignum_length(Bignum bn) +{ + return 4 + (bignum_bitcount(bn) + 8) / 8; +} + +/* + * Return a byte from a bignum; 0 is least significant, etc. + */ +int bignum_byte(Bignum bn, int i) +{ + if (i >= BIGNUM_INT_BYTES * bn[0]) + return 0; /* beyond the end */ + else + return (bn[i / BIGNUM_INT_BYTES + 1] >> + ((i % BIGNUM_INT_BYTES)*8)) & 0xFF; +} + +/* + * Return a bit from a bignum; 0 is least significant, etc. + */ +int bignum_bit(Bignum bn, int i) +{ + if (i >= BIGNUM_INT_BITS * bn[0]) + return 0; /* beyond the end */ + else + return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1; +} + +/* + * Set a bit in a bignum; 0 is least significant, etc. + */ +void bignum_set_bit(Bignum bn, int bitnum, int value) +{ + if (bitnum >= BIGNUM_INT_BITS * bn[0]) + abort(); /* beyond the end */ + else { + int v = bitnum / BIGNUM_INT_BITS + 1; + int mask = 1 << (bitnum % BIGNUM_INT_BITS); + if (value) + bn[v] |= mask; + else + bn[v] &= ~mask; } +} - *result = bn; +/* + * Write a ssh1-format bignum into a buffer. It is assumed the + * buffer is big enough. Returns the number of bytes used. + */ +int ssh1_write_bignum(void *data, Bignum bn) +{ + unsigned char *p = data; + int len = ssh1_bignum_length(bn); + int i; + int bitc = bignum_bitcount(bn); - return p - data; + *p++ = (bitc >> 8) & 0xFF; + *p++ = (bitc) & 0xFF; + for (i = len - 2; i--;) + *p++ = bignum_byte(bn, i); + return len; +} + +/* + * Compare two bignums. Returns like strcmp. + */ +int bignum_cmp(Bignum a, Bignum b) +{ + int amax = a[0], bmax = b[0]; + int i = (amax > bmax ? amax : bmax); + while (i) { + BignumInt aval = (i > amax ? 0 : a[i]); + BignumInt bval = (i > bmax ? 0 : b[i]); + if (aval < bval) + return -1; + if (aval > bval) + return +1; + i--; + } + return 0; +} + +/* + * Right-shift one bignum to form another. + */ +Bignum bignum_rshift(Bignum a, int shift) +{ + Bignum ret; + int i, shiftw, shiftb, shiftbb, bits; + BignumInt ai, ai1; + + bits = bignum_bitcount(a) - shift; + ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS); + + if (ret) { + shiftw = shift / BIGNUM_INT_BITS; + shiftb = shift % BIGNUM_INT_BITS; + shiftbb = BIGNUM_INT_BITS - shiftb; + + ai1 = a[shiftw + 1]; + for (i = 1; i <= ret[0]; i++) { + ai = ai1; + ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0); + ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK; + } + } + + return ret; +} + +/* + * Non-modular multiplication and addition. + */ +Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) +{ + int alen = a[0], blen = b[0]; + int mlen = (alen > blen ? alen : blen); + int rlen, i, maxspot; + BignumInt *workspace; + Bignum ret; + + /* mlen space for a, mlen space for b, 2*mlen for result */ + workspace = snewn(mlen * 4, BignumInt); + for (i = 0; i < mlen; i++) { + workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0); + workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0); + } + + internal_mul(workspace + 0 * mlen, workspace + 1 * mlen, + workspace + 2 * mlen, mlen); + + /* now just copy the result back */ + rlen = alen + blen + 1; + if (addend && rlen <= addend[0]) + rlen = addend[0] + 1; + ret = newbn(rlen); + maxspot = 0; + for (i = 1; i <= ret[0]; i++) { + ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0); + if (ret[i] != 0) + maxspot = i; + } + ret[0] = maxspot; + + /* now add in the addend, if any */ + if (addend) { + BignumDblInt carry = 0; + for (i = 1; i <= rlen; i++) { + carry += (i <= ret[0] ? ret[i] : 0); + carry += (i <= addend[0] ? addend[i] : 0); + ret[i] = (BignumInt) carry & BIGNUM_INT_MASK; + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0 && i > maxspot) + maxspot = i; + } + } + ret[0] = maxspot; + + sfree(workspace); + return ret; +} + +/* + * Non-modular multiplication. + */ +Bignum bigmul(Bignum a, Bignum b) +{ + return bigmuladd(a, b, NULL); +} + +/* + * Create a bignum which is the bitmask covering another one. That + * is, the smallest integer which is >= N and is also one less than + * a power of two. + */ +Bignum bignum_bitmask(Bignum n) +{ + Bignum ret = copybn(n); + int i; + BignumInt j; + + i = ret[0]; + while (n[i] == 0 && i > 0) + i--; + if (i <= 0) + return ret; /* input was zero */ + j = 1; + while (j < n[i]) + j = 2 * j + 1; + ret[i] = j; + while (--i > 0) + ret[i] = BIGNUM_INT_MASK; + return ret; +} + +/* + * Convert a (max 32-bit) long into a bignum. + */ +Bignum bignum_from_long(unsigned long nn) +{ + Bignum ret; + BignumDblInt n = nn; + + ret = newbn(3); + ret[1] = (BignumInt)(n & BIGNUM_INT_MASK); + ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK); + ret[3] = 0; + ret[0] = (ret[2] ? 2 : 1); + return ret; +} + +/* + * Add a long to a bignum. + */ +Bignum bignum_add_long(Bignum number, unsigned long addendx) +{ + Bignum ret = newbn(number[0] + 1); + int i, maxspot = 0; + BignumDblInt carry = 0, addend = addendx; + + for (i = 1; i <= ret[0]; i++) { + carry += addend & BIGNUM_INT_MASK; + carry += (i <= number[0] ? number[i] : 0); + addend >>= BIGNUM_INT_BITS; + ret[i] = (BignumInt) carry & BIGNUM_INT_MASK; + carry >>= BIGNUM_INT_BITS; + if (ret[i] != 0) + maxspot = i; + } + ret[0] = maxspot; + return ret; +} + +/* + * Compute the residue of a bignum, modulo a (max 16-bit) short. + */ +unsigned short bignum_mod_short(Bignum number, unsigned short modulus) +{ + BignumDblInt mod, r; + int i; + + r = 0; + mod = modulus; + for (i = number[0]; i > 0; i--) + r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod; + return (unsigned short) r; +} + +#ifdef DEBUG +void diagbn(char *prefix, Bignum md) +{ + int i, nibbles, morenibbles; + static const char hex[] = "0123456789ABCDEF"; + + debug(("%s0x", prefix ? prefix : "")); + + nibbles = (3 + bignum_bitcount(md)) / 4; + if (nibbles < 1) + nibbles = 1; + morenibbles = 4 * md[0] - nibbles; + for (i = 0; i < morenibbles; i++) + debug(("-")); + for (i = nibbles; i--;) + debug(("%c", + hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF])); + + if (prefix) + debug(("\n")); +} +#endif + +/* + * Simple division. + */ +Bignum bigdiv(Bignum a, Bignum b) +{ + Bignum q = newbn(a[0]); + bigdivmod(a, b, NULL, q); + return q; +} + +/* + * Simple remainder. + */ +Bignum bigmod(Bignum a, Bignum b) +{ + Bignum r = newbn(b[0]); + bigdivmod(a, b, r, NULL); + return r; +} + +/* + * Greatest common divisor. + */ +Bignum biggcd(Bignum av, Bignum bv) +{ + Bignum a = copybn(av); + Bignum b = copybn(bv); + + while (bignum_cmp(b, Zero) != 0) { + Bignum t = newbn(b[0]); + bigdivmod(a, b, t, NULL); + while (t[0] > 1 && t[t[0]] == 0) + t[0]--; + freebn(a); + a = b; + b = t; + } + + freebn(b); + return a; +} + +/* + * Modular inverse, using Euclid's extended algorithm. + */ +Bignum modinv(Bignum number, Bignum modulus) +{ + Bignum a = copybn(modulus); + Bignum b = copybn(number); + Bignum xp = copybn(Zero); + Bignum x = copybn(One); + int sign = +1; + + while (bignum_cmp(b, One) != 0) { + Bignum t = newbn(b[0]); + Bignum q = newbn(a[0]); + bigdivmod(a, b, t, q); + while (t[0] > 1 && t[t[0]] == 0) + t[0]--; + freebn(a); + a = b; + b = t; + t = xp; + xp = x; + x = bigmuladd(q, xp, t); + sign = -sign; + freebn(t); + freebn(q); + } + + freebn(b); + freebn(a); + freebn(xp); + + /* now we know that sign * x == 1, and that x < modulus */ + if (sign < 0) { + /* set a new x to be modulus - x */ + Bignum newx = newbn(modulus[0]); + BignumInt carry = 0; + int maxspot = 1; + int i; + + for (i = 1; i <= newx[0]; i++) { + BignumInt aword = (i <= modulus[0] ? modulus[i] : 0); + BignumInt bword = (i <= x[0] ? x[i] : 0); + newx[i] = aword - bword - carry; + bword = ~bword; + carry = carry ? (newx[i] >= bword) : (newx[i] > bword); + if (newx[i] != 0) + maxspot = i; + } + newx[0] = maxspot; + freebn(x); + x = newx; + } + + /* and return. */ + return x; +} + +/* + * Render a bignum into decimal. Return a malloced string holding + * the decimal representation. + */ +char *bignum_decimal(Bignum x) +{ + int ndigits, ndigit; + int i, iszero; + BignumDblInt carry; + char *ret; + BignumInt *workspace; + + /* + * First, estimate the number of digits. Since log(10)/log(2) + * is just greater than 93/28 (the joys of continued fraction + * approximations...) we know that for every 93 bits, we need + * at most 28 digits. This will tell us how much to malloc. + * + * Formally: if x has i bits, that means x is strictly less + * than 2^i. Since 2 is less than 10^(28/93), this is less than + * 10^(28i/93). We need an integer power of ten, so we must + * round up (rounding down might make it less than x again). + * Therefore if we multiply the bit count by 28/93, rounding + * up, we will have enough digits. + */ + i = bignum_bitcount(x); + ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */ + ndigits++; /* allow for trailing \0 */ + ret = snewn(ndigits, char); + + /* + * Now allocate some workspace to hold the binary form as we + * repeatedly divide it by ten. Initialise this to the + * big-endian form of the number. + */ + workspace = snewn(x[0], BignumInt); + for (i = 0; i < x[0]; i++) + workspace[i] = x[x[0] - i]; + + /* + * Next, write the decimal number starting with the last digit. + * We use ordinary short division, dividing 10 into the + * workspace. + */ + ndigit = ndigits - 1; + ret[ndigit] = '\0'; + do { + iszero = 1; + carry = 0; + for (i = 0; i < x[0]; i++) { + carry = (carry << BIGNUM_INT_BITS) + workspace[i]; + workspace[i] = (BignumInt) (carry / 10); + if (workspace[i]) + iszero = 0; + carry %= 10; + } + ret[--ndigit] = (char) (carry + '0'); + } while (!iszero); + + /* + * There's a chance we've fallen short of the start of the + * string. Correct if so. + */ + if (ndigit > 0) + memmove(ret, ret + ndigit, ndigits - ndigit); + + /* + * Done. + */ + sfree(workspace); + return ret; }