e45eb9b5dec1d705f84a7e1f557f12baae596183
[u/mdw/putty] / windows / winhandl.c
1 /*
2 * winhandl.c: Module to give Windows front ends the general
3 * ability to deal with consoles, pipes, serial ports, or any other
4 * type of data stream accessed through a Windows API HANDLE rather
5 * than a WinSock SOCKET.
6 *
7 * We do this by spawning a subthread to continuously try to read
8 * from the handle. Every time a read successfully returns some
9 * data, the subthread sets an event object which is picked up by
10 * the main thread, and the main thread then sets an event in
11 * return to instruct the subthread to resume reading.
12 *
13 * Output works precisely the other way round, in a second
14 * subthread. The output subthread should not be attempting to
15 * write all the time, because it hasn't always got data _to_
16 * write; so the output thread waits for an event object notifying
17 * it to _attempt_ a write, and then it sets an event in return
18 * when one completes.
19 */
20
21 #include <assert.h>
22
23 #include "putty.h"
24
25 /* ----------------------------------------------------------------------
26 * Generic definitions.
27 */
28
29 /*
30 * Maximum amount of backlog we will allow to build up on an input
31 * handle before we stop reading from it.
32 */
33 #define MAX_BACKLOG 32768
34
35 struct handle_generic {
36 /*
37 * Initial fields common to both handle_input and handle_output
38 * structures.
39 *
40 * The three HANDLEs are set up at initialisation time and are
41 * thereafter read-only to both main thread and subthread.
42 * `moribund' is only used by the main thread; `done' is
43 * written by the main thread before signalling to the
44 * subthread. `defunct' and `busy' are used only by the main
45 * thread.
46 */
47 HANDLE h; /* the handle itself */
48 HANDLE ev_to_main; /* event used to signal main thread */
49 HANDLE ev_from_main; /* event used to signal back to us */
50 int moribund; /* are we going to kill this soon? */
51 int done; /* request subthread to terminate */
52 int defunct; /* has the subthread already gone? */
53 int busy; /* operation currently in progress? */
54 void *privdata; /* for client to remember who they are */
55 };
56
57 /* ----------------------------------------------------------------------
58 * Input threads.
59 */
60
61 /*
62 * Data required by an input thread.
63 */
64 struct handle_input {
65 /*
66 * Copy of the handle_generic structure.
67 */
68 HANDLE h; /* the handle itself */
69 HANDLE ev_to_main; /* event used to signal main thread */
70 HANDLE ev_from_main; /* event used to signal back to us */
71 int moribund; /* are we going to kill this soon? */
72 int done; /* request subthread to terminate */
73 int defunct; /* has the subthread already gone? */
74 int busy; /* operation currently in progress? */
75 void *privdata; /* for client to remember who they are */
76
77 /*
78 * Data set by the input thread before signalling ev_to_main,
79 * and read by the main thread after receiving that signal.
80 */
81 char buffer[4096]; /* the data read from the handle */
82 DWORD len; /* how much data that was */
83 int readret; /* lets us know about read errors */
84
85 /*
86 * Callback function called by this module when data arrives on
87 * an input handle.
88 */
89 handle_inputfn_t gotdata;
90 };
91
92 /*
93 * The actual thread procedure for an input thread.
94 */
95 static DWORD WINAPI handle_input_threadfunc(void *param)
96 {
97 struct handle_input *ctx = (struct handle_input *) param;
98
99 while (1) {
100 ctx->readret = ReadFile(ctx->h, ctx->buffer, sizeof(ctx->buffer),
101 &ctx->len, NULL);
102 if (!ctx->readret)
103 ctx->len = 0;
104
105 SetEvent(ctx->ev_to_main);
106
107 if (!ctx->len)
108 break;
109
110 WaitForSingleObject(ctx->ev_from_main, INFINITE);
111 if (ctx->done)
112 break; /* main thread told us to shut down */
113 }
114
115 return 0;
116 }
117
118 /*
119 * This is called after a succcessful read, or from the
120 * `unthrottle' function. It decides whether or not to begin a new
121 * read operation.
122 */
123 static void handle_throttle(struct handle_input *ctx, int backlog)
124 {
125 if (ctx->defunct)
126 return;
127
128 /*
129 * If there's a read operation already in progress, do nothing:
130 * when that completes, we'll come back here and be in a
131 * position to make a better decision.
132 */
133 if (ctx->busy)
134 return;
135
136 /*
137 * Otherwise, we must decide whether to start a new read based
138 * on the size of the backlog.
139 */
140 if (backlog < MAX_BACKLOG) {
141 SetEvent(ctx->ev_from_main);
142 ctx->busy = TRUE;
143 }
144 }
145
146 /* ----------------------------------------------------------------------
147 * Output threads.
148 */
149
150 /*
151 * Data required by an output thread.
152 */
153 struct handle_output {
154 /*
155 * Copy of the handle_generic structure.
156 */
157 HANDLE h; /* the handle itself */
158 HANDLE ev_to_main; /* event used to signal main thread */
159 HANDLE ev_from_main; /* event used to signal back to us */
160 int moribund; /* are we going to kill this soon? */
161 int done; /* request subthread to terminate */
162 int defunct; /* has the subthread already gone? */
163 int busy; /* operation currently in progress? */
164 void *privdata; /* for client to remember who they are */
165
166 /*
167 * Data set by the main thread before signalling ev_from_main,
168 * and read by the input thread after receiving that signal.
169 */
170 char *buffer; /* the data to write */
171 DWORD len; /* how much data there is */
172
173 /*
174 * Data set by the input thread before signalling ev_to_main,
175 * and read by the main thread after receiving that signal.
176 */
177 DWORD lenwritten; /* how much data we actually wrote */
178 int writeret; /* return value from WriteFile */
179
180 /*
181 * Data only ever read or written by the main thread.
182 */
183 bufchain queued_data; /* data still waiting to be written */
184
185 /*
186 * Callback function called when the backlog in the bufchain
187 * drops.
188 */
189 handle_outputfn_t sentdata;
190 };
191
192 static DWORD WINAPI handle_output_threadfunc(void *param)
193 {
194 struct handle_output *ctx = (struct handle_output *) param;
195
196 while (1) {
197 WaitForSingleObject(ctx->ev_from_main, INFINITE);
198 if (ctx->done) {
199 SetEvent(ctx->ev_to_main);
200 break;
201 }
202 ctx->writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
203 &ctx->lenwritten, NULL);
204 SetEvent(ctx->ev_to_main);
205 if (!ctx->writeret)
206 break;
207 }
208
209 return 0;
210 }
211
212 static void handle_try_output(struct handle_output *ctx)
213 {
214 void *senddata;
215 int sendlen;
216
217 if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
218 bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
219 ctx->buffer = senddata;
220 ctx->len = sendlen;
221 SetEvent(ctx->ev_from_main);
222 ctx->busy = TRUE;
223 }
224 }
225
226 /* ----------------------------------------------------------------------
227 * Unified code handling both input and output threads.
228 */
229
230 struct handle {
231 int output;
232 union {
233 struct handle_generic g;
234 struct handle_input i;
235 struct handle_output o;
236 } u;
237 };
238
239 static tree234 *handles_by_evtomain;
240
241 static int handle_cmp_evtomain(void *av, void *bv)
242 {
243 struct handle *a = (struct handle *)av;
244 struct handle *b = (struct handle *)bv;
245
246 if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
247 return -1;
248 else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
249 return +1;
250 else
251 return 0;
252 }
253
254 static int handle_find_evtomain(void *av, void *bv)
255 {
256 HANDLE *a = (HANDLE *)av;
257 struct handle *b = (struct handle *)bv;
258
259 if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
260 return -1;
261 else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
262 return +1;
263 else
264 return 0;
265 }
266
267 struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
268 void *privdata)
269 {
270 struct handle *h = snew(struct handle);
271
272 h->output = FALSE;
273 h->u.i.h = handle;
274 h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
275 h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
276 h->u.i.gotdata = gotdata;
277 h->u.i.defunct = FALSE;
278 h->u.i.moribund = FALSE;
279 h->u.i.done = FALSE;
280 h->u.i.privdata = privdata;
281
282 if (!handles_by_evtomain)
283 handles_by_evtomain = newtree234(handle_cmp_evtomain);
284 add234(handles_by_evtomain, h);
285
286 CreateThread(NULL, 0, handle_input_threadfunc,
287 &h->u.i, 0, NULL);
288 h->u.i.busy = TRUE;
289
290 return h;
291 }
292
293 struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
294 void *privdata)
295 {
296 struct handle *h = snew(struct handle);
297
298 h->output = TRUE;
299 h->u.o.h = handle;
300 h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
301 h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
302 h->u.o.busy = FALSE;
303 h->u.o.defunct = FALSE;
304 h->u.o.moribund = FALSE;
305 h->u.o.done = FALSE;
306 h->u.o.privdata = privdata;
307 bufchain_init(&h->u.o.queued_data);
308 h->u.o.sentdata = sentdata;
309
310 if (!handles_by_evtomain)
311 handles_by_evtomain = newtree234(handle_cmp_evtomain);
312 add234(handles_by_evtomain, h);
313
314 CreateThread(NULL, 0, handle_output_threadfunc,
315 &h->u.i, 0, NULL);
316
317 return h;
318 }
319
320 int handle_write(struct handle *h, const void *data, int len)
321 {
322 assert(h->output);
323 bufchain_add(&h->u.o.queued_data, data, len);
324 handle_try_output(&h->u.o);
325 return bufchain_size(&h->u.o.queued_data);
326 }
327
328 HANDLE *handle_get_events(int *nevents)
329 {
330 HANDLE *ret;
331 struct handle *h;
332 int i, n, size;
333
334 /*
335 * Go through our tree counting the handle objects currently
336 * engaged in useful activity.
337 */
338 ret = NULL;
339 n = size = 0;
340 if (handles_by_evtomain) {
341 for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
342 if (h->u.g.busy) {
343 if (n >= size) {
344 size += 32;
345 ret = sresize(ret, size, HANDLE);
346 }
347 ret[n++] = h->u.g.ev_to_main;
348 }
349 }
350 }
351
352 *nevents = n;
353 return ret;
354 }
355
356 static void handle_destroy(struct handle *h)
357 {
358 if (h->output)
359 bufchain_clear(&h->u.o.queued_data);
360 CloseHandle(h->u.g.ev_from_main);
361 CloseHandle(h->u.g.ev_to_main);
362 del234(handles_by_evtomain, h);
363 sfree(h);
364 }
365
366 void handle_free(struct handle *h)
367 {
368 /*
369 * If the handle is currently busy, we cannot immediately free
370 * it. Instead we must wait until it's finished its current
371 * operation, because otherwise the subthread will write to
372 * invalid memory after we free its context from under it.
373 */
374 assert(h && !h->u.g.moribund);
375 if (h->u.g.busy) {
376 /*
377 * Just set the moribund flag, which will be noticed next
378 * time an operation completes.
379 */
380 h->u.g.moribund = TRUE;
381 } else if (h->u.g.defunct) {
382 /*
383 * There isn't even a subthread; we can go straight to
384 * handle_destroy.
385 */
386 handle_destroy(h);
387 } else {
388 /*
389 * The subthread is alive but not busy, so we now signal it
390 * to die. Set the moribund flag to indicate that it will
391 * want destroying after that.
392 */
393 h->u.g.moribund = TRUE;
394 h->u.g.done = TRUE;
395 h->u.g.busy = TRUE;
396 SetEvent(h->u.g.ev_from_main);
397 }
398 }
399
400 void handle_got_event(HANDLE event)
401 {
402 struct handle *h;
403
404 assert(handles_by_evtomain);
405 h = find234(handles_by_evtomain, &event, handle_find_evtomain);
406 if (!h) {
407 /*
408 * This isn't an error condition. If two or more event
409 * objects were signalled during the same select operation,
410 * and processing of the first caused the second handle to
411 * be closed, then it will sometimes happen that we receive
412 * an event notification here for a handle which is already
413 * deceased. In that situation we simply do nothing.
414 */
415 return;
416 }
417
418 if (h->u.g.moribund) {
419 /*
420 * A moribund handle is already treated as dead from the
421 * external user's point of view, so do nothing with the
422 * actual event. Just signal the thread to die if
423 * necessary, or destroy the handle if not.
424 */
425 if (h->u.g.done) {
426 handle_destroy(h);
427 } else {
428 h->u.g.done = TRUE;
429 h->u.g.busy = TRUE;
430 SetEvent(h->u.g.ev_from_main);
431 }
432 return;
433 }
434
435 if (!h->output) {
436 int backlog;
437
438 h->u.i.busy = FALSE;
439
440 /*
441 * A signal on an input handle means data has arrived.
442 */
443 if (h->u.i.len == 0) {
444 /*
445 * EOF, or (nearly equivalently) read error.
446 */
447 h->u.i.gotdata(h, NULL, (h->u.i.readret ? 0 : -1));
448 h->u.i.defunct = TRUE;
449 } else {
450 backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
451 handle_throttle(&h->u.i, backlog);
452 }
453 } else {
454 h->u.o.busy = FALSE;
455
456 /*
457 * A signal on an output handle means we have completed a
458 * write. Call the callback to indicate that the output
459 * buffer size has decreased, or to indicate an error.
460 */
461 if (!h->u.o.writeret) {
462 /*
463 * Write error. Send a negative value to the callback,
464 * and mark the thread as defunct (because the output
465 * thread is terminating by now).
466 */
467 h->u.o.sentdata(h, -1);
468 h->u.o.defunct = TRUE;
469 } else {
470 bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
471 h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
472 handle_try_output(&h->u.o);
473 }
474 }
475 }
476
477 void handle_unthrottle(struct handle *h, int backlog)
478 {
479 assert(!h->output);
480 handle_throttle(&h->u.i, backlog);
481 }
482
483 int handle_backlog(struct handle *h)
484 {
485 assert(h->output);
486 return bufchain_size(&h->u.o.queued_data);
487 }
488
489 void *handle_get_privdata(struct handle *h)
490 {
491 return h->u.g.privdata;
492 }