Further restructuring
[u/mdw/putty] / tree234.c
CommitLineData
febd9a0f 1/*
2 * tree234.c: reasonably generic 2-3-4 tree routines. Currently
3 * supports insert, delete, find and iterate operations.
4 */
5
6#include <stdio.h>
7#include <stdlib.h>
8
9#include "tree234.h"
10
11#define mknew(typ) ( (typ *) malloc (sizeof (typ)) )
12#define sfree free
13
14#ifdef TEST
15#define LOG(x) (printf x)
16#else
17#define LOG(x)
18#endif
19
20struct tree234_Tag {
21 node234 *root;
22 cmpfn234 cmp;
23};
24
25struct node234_Tag {
26 node234 *parent;
27 node234 *kids[4];
28 void *elems[3];
29};
30
31/*
32 * Create a 2-3-4 tree.
33 */
34tree234 *newtree234(cmpfn234 cmp) {
35 tree234 *ret = mknew(tree234);
36 LOG(("created tree %p\n", ret));
37 ret->root = NULL;
38 ret->cmp = cmp;
39 return ret;
40}
41
42/*
43 * Free a 2-3-4 tree (not including freeing the elements).
44 */
45static void freenode234(node234 *n) {
46 if (!n)
47 return;
48 freenode234(n->kids[0]);
49 freenode234(n->kids[1]);
50 freenode234(n->kids[2]);
51 freenode234(n->kids[3]);
52 sfree(n);
53}
54void freetree234(tree234 *t) {
55 freenode234(t->root);
56 sfree(t);
57}
58
59/*
60 * Add an element e to a 2-3-4 tree t. Returns e on success, or if
61 * an existing element compares equal, returns that.
62 */
63void *add234(tree234 *t, void *e) {
64 node234 *n, **np, *left, *right;
65 void *orig_e = e;
66 int c;
67
68 LOG(("adding node %p to tree %p\n", e, t));
69 if (t->root == NULL) {
70 t->root = mknew(node234);
71 t->root->elems[1] = t->root->elems[2] = NULL;
72 t->root->kids[0] = t->root->kids[1] = NULL;
73 t->root->kids[2] = t->root->kids[3] = NULL;
74 t->root->parent = NULL;
75 t->root->elems[0] = e;
76 LOG((" created root %p\n", t->root));
77 return orig_e;
78 }
79
80 np = &t->root;
81 while (*np) {
82 n = *np;
83 LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
84 n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
85 n->kids[2], n->elems[2], n->kids[3]));
86 if ((c = t->cmp(e, n->elems[0])) < 0)
87 np = &n->kids[0];
88 else if (c == 0)
89 return n->elems[0]; /* already exists */
90 else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
91 np = &n->kids[1];
92 else if (c == 0)
93 return n->elems[1]; /* already exists */
94 else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
95 np = &n->kids[2];
96 else if (c == 0)
97 return n->elems[2]; /* already exists */
98 else
99 np = &n->kids[3];
100 LOG((" moving to child %d (%p)\n", np - n->kids, *np));
101 }
102
103 /*
104 * We need to insert the new element in n at position np.
105 */
106 left = NULL;
107 right = NULL;
108 while (n) {
109 LOG((" at %p: %p [%p] %p [%p] %p [%p] %p\n",
110 n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
111 n->kids[2], n->elems[2], n->kids[3]));
112 LOG((" need to insert %p [%p] %p at position %d\n",
113 left, e, right, np - n->kids));
114 if (n->elems[1] == NULL) {
115 /*
116 * Insert in a 2-node; simple.
117 */
118 if (np == &n->kids[0]) {
119 LOG((" inserting on left of 2-node\n"));
120 n->kids[2] = n->kids[1];
121 n->elems[1] = n->elems[0];
122 n->kids[1] = right;
123 n->elems[0] = e;
124 n->kids[0] = left;
125 } else { /* np == &n->kids[1] */
126 LOG((" inserting on right of 2-node\n"));
127 n->kids[2] = right;
128 n->elems[1] = e;
129 n->kids[1] = left;
130 }
131 if (n->kids[0]) n->kids[0]->parent = n;
132 if (n->kids[1]) n->kids[1]->parent = n;
133 if (n->kids[2]) n->kids[2]->parent = n;
134 LOG((" done\n"));
135 break;
136 } else if (n->elems[2] == NULL) {
137 /*
138 * Insert in a 3-node; simple.
139 */
140 if (np == &n->kids[0]) {
141 LOG((" inserting on left of 3-node\n"));
142 n->kids[3] = n->kids[2];
143 n->elems[2] = n->elems[1];
144 n->kids[2] = n->kids[1];
145 n->elems[1] = n->elems[0];
146 n->kids[1] = right;
147 n->elems[0] = e;
148 n->kids[0] = left;
149 } else if (np == &n->kids[1]) {
150 LOG((" inserting in middle of 3-node\n"));
151 n->kids[3] = n->kids[2];
152 n->elems[2] = n->elems[1];
153 n->kids[2] = right;
154 n->elems[1] = e;
155 n->kids[1] = left;
156 } else { /* np == &n->kids[2] */
157 LOG((" inserting on right of 3-node\n"));
158 n->kids[3] = right;
159 n->elems[2] = e;
160 n->kids[2] = left;
161 }
162 if (n->kids[0]) n->kids[0]->parent = n;
163 if (n->kids[1]) n->kids[1]->parent = n;
164 if (n->kids[2]) n->kids[2]->parent = n;
165 if (n->kids[3]) n->kids[3]->parent = n;
166 LOG((" done\n"));
167 break;
168 } else {
169 node234 *m = mknew(node234);
170 m->parent = n->parent;
171 LOG((" splitting a 4-node; created new node %p\n", m));
172 /*
173 * Insert in a 4-node; split into a 2-node and a
174 * 3-node, and move focus up a level.
175 *
176 * I don't think it matters which way round we put the
177 * 2 and the 3. For simplicity, we'll put the 3 first
178 * always.
179 */
180 if (np == &n->kids[0]) {
181 m->kids[0] = left;
182 m->elems[0] = e;
183 m->kids[1] = right;
184 m->elems[1] = n->elems[0];
185 m->kids[2] = n->kids[1];
186 e = n->elems[1];
187 n->kids[0] = n->kids[2];
188 n->elems[0] = n->elems[2];
189 n->kids[1] = n->kids[3];
190 } else if (np == &n->kids[1]) {
191 m->kids[0] = n->kids[0];
192 m->elems[0] = n->elems[0];
193 m->kids[1] = left;
194 m->elems[1] = e;
195 m->kids[2] = right;
196 e = n->elems[1];
197 n->kids[0] = n->kids[2];
198 n->elems[0] = n->elems[2];
199 n->kids[1] = n->kids[3];
200 } else if (np == &n->kids[2]) {
201 m->kids[0] = n->kids[0];
202 m->elems[0] = n->elems[0];
203 m->kids[1] = n->kids[1];
204 m->elems[1] = n->elems[1];
205 m->kids[2] = left;
206 /* e = e; */
207 n->kids[0] = right;
208 n->elems[0] = n->elems[2];
209 n->kids[1] = n->kids[3];
210 } else { /* np == &n->kids[3] */
211 m->kids[0] = n->kids[0];
212 m->elems[0] = n->elems[0];
213 m->kids[1] = n->kids[1];
214 m->elems[1] = n->elems[1];
215 m->kids[2] = n->kids[2];
216 n->kids[0] = left;
217 n->elems[0] = e;
218 n->kids[1] = right;
219 e = n->elems[2];
220 }
221 m->kids[3] = n->kids[3] = n->kids[2] = NULL;
222 m->elems[2] = n->elems[2] = n->elems[1] = NULL;
223 if (m->kids[0]) m->kids[0]->parent = m;
224 if (m->kids[1]) m->kids[1]->parent = m;
225 if (m->kids[2]) m->kids[2]->parent = m;
226 if (n->kids[0]) n->kids[0]->parent = n;
227 if (n->kids[1]) n->kids[1]->parent = n;
228 LOG((" left (%p): %p [%p] %p [%p] %p\n", m,
229 m->kids[0], m->elems[0],
230 m->kids[1], m->elems[1],
231 m->kids[2]));
232 LOG((" right (%p): %p [%p] %p\n", n,
233 n->kids[0], n->elems[0],
234 n->kids[1]));
235 left = m;
236 right = n;
237 }
238 if (n->parent)
239 np = (n->parent->kids[0] == n ? &n->parent->kids[0] :
240 n->parent->kids[1] == n ? &n->parent->kids[1] :
241 n->parent->kids[2] == n ? &n->parent->kids[2] :
242 &n->parent->kids[3]);
243 n = n->parent;
244 }
245
246 /*
247 * If we've come out of here by `break', n will still be
248 * non-NULL and we've finished. If we've come here because n is
249 * NULL, we need to create a new root for the tree because the
250 * old one has just split into two.
251 */
252 if (!n) {
253 LOG((" root is overloaded, split into two\n"));
254 t->root = mknew(node234);
255 t->root->kids[0] = left;
256 t->root->elems[0] = e;
257 t->root->kids[1] = right;
258 t->root->elems[1] = NULL;
259 t->root->kids[2] = NULL;
260 t->root->elems[2] = NULL;
261 t->root->kids[3] = NULL;
262 t->root->parent = NULL;
263 if (t->root->kids[0]) t->root->kids[0]->parent = t->root;
264 if (t->root->kids[1]) t->root->kids[1]->parent = t->root;
265 LOG((" new root is %p [%p] %p\n",
266 t->root->kids[0], t->root->elems[0], t->root->kids[1]));
267 }
268
269 return orig_e;
270}
271
272/*
273 * Find an element e in a 2-3-4 tree t. Returns NULL if not found.
274 * e is always passed as the first argument to cmp, so cmp can be
275 * an asymmetric function if desired. cmp can also be passed as
276 * NULL, in which case the compare function from the tree proper
277 * will be used.
278 */
279void *find234(tree234 *t, void *e, cmpfn234 cmp) {
280 node234 *n;
281 int c;
282
283 if (t->root == NULL)
284 return NULL;
285
286 if (cmp == NULL)
287 cmp = t->cmp;
288
289 n = t->root;
290 while (n) {
81d77872 291 if ( (c = cmp(e, n->elems[0])) < 0)
febd9a0f 292 n = n->kids[0];
293 else if (c == 0)
294 return n->elems[0];
81d77872 295 else if (n->elems[1] == NULL || (c = cmp(e, n->elems[1])) < 0)
febd9a0f 296 n = n->kids[1];
297 else if (c == 0)
298 return n->elems[1];
81d77872 299 else if (n->elems[2] == NULL || (c = cmp(e, n->elems[2])) < 0)
febd9a0f 300 n = n->kids[2];
301 else if (c == 0)
302 return n->elems[2];
303 else
304 n = n->kids[3];
305 }
306
307 /*
308 * We've found our way to the bottom of the tree and we know
309 * where we would insert this node if we wanted to. But it
310 * isn't there.
311 */
312 return NULL;
313}
314
315/*
316 * Delete an element e in a 2-3-4 tree. Does not free the element,
317 * merely removes all links to it from the tree nodes.
318 */
81d77872 319void del234(tree234 *t, void *e) {
febd9a0f 320 node234 *n;
321 int ei = -1;
322
323 n = t->root;
324 LOG(("deleting %p from tree %p\n", e, t));
325 while (1) {
326 while (n) {
327 int c;
328 int ki;
329 node234 *sub;
330
331 LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n",
332 n, n->kids[0], n->elems[0], n->kids[1], n->elems[1],
333 n->kids[2], n->elems[2], n->kids[3]));
334 if ((c = t->cmp(e, n->elems[0])) < 0) {
335 ki = 0;
336 } else if (c == 0) {
337 ei = 0; break;
338 } else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) {
339 ki = 1;
340 } else if (c == 0) {
341 ei = 1; break;
342 } else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) {
343 ki = 2;
344 } else if (c == 0) {
345 ei = 2; break;
346 } else {
347 ki = 3;
348 }
349 /*
350 * Recurse down to subtree ki. If it has only one element,
351 * we have to do some transformation to start with.
352 */
353 LOG((" moving to subtree %d\n", ki));
354 sub = n->kids[ki];
355 if (!sub->elems[1]) {
356 LOG((" subtree has only one element!\n", ki));
357 if (ki > 0 && n->kids[ki-1]->elems[1]) {
358 /*
359 * Case 3a, left-handed variant. Child ki has
360 * only one element, but child ki-1 has two or
361 * more. So we need to move a subtree from ki-1
362 * to ki.
363 *
364 * . C . . B .
365 * / \ -> / \
366 * [more] a A b B c d D e [more] a A b c C d D e
367 */
368 node234 *sib = n->kids[ki-1];
369 int lastelem = (sib->elems[2] ? 2 :
370 sib->elems[1] ? 1 : 0);
371 sub->kids[2] = sub->kids[1];
372 sub->elems[1] = sub->elems[0];
373 sub->kids[1] = sub->kids[0];
374 sub->elems[0] = n->elems[ki-1];
375 sub->kids[0] = sib->kids[lastelem+1];
100122a9 376 if (sub->kids[0]) sub->kids[0]->parent = sub;
febd9a0f 377 n->elems[ki-1] = sib->elems[lastelem];
378 sib->kids[lastelem+1] = NULL;
379 sib->elems[lastelem] = NULL;
380 LOG((" case 3a left\n"));
381 } else if (ki < 3 && n->kids[ki+1] &&
382 n->kids[ki+1]->elems[1]) {
383 /*
384 * Case 3a, right-handed variant. ki has only
385 * one element but ki+1 has two or more. Move a
386 * subtree from ki+1 to ki.
387 *
388 * . B . . C .
389 * / \ -> / \
390 * a A b c C d D e [more] a A b B c d D e [more]
391 */
392 node234 *sib = n->kids[ki+1];
393 int j;
394 sub->elems[1] = n->elems[ki];
395 sub->kids[2] = sib->kids[0];
100122a9 396 if (sub->kids[2]) sub->kids[2]->parent = sub;
febd9a0f 397 n->elems[ki] = sib->elems[0];
398 sib->kids[0] = sib->kids[1];
399 for (j = 0; j < 2 && sib->elems[j+1]; j++) {
400 sib->kids[j+1] = sib->kids[j+2];
401 sib->elems[j] = sib->elems[j+1];
402 }
403 sib->kids[j+1] = NULL;
404 sib->elems[j] = NULL;
405 LOG((" case 3a right\n"));
406 } else {
407 /*
408 * Case 3b. ki has only one element, and has no
409 * neighbour with more than one. So pick a
410 * neighbour and merge it with ki, taking an
411 * element down from n to go in the middle.
412 *
413 * . B . .
414 * / \ -> |
415 * a A b c C d a A b B c C d
416 *
417 * (Since at all points we have avoided
418 * descending to a node with only one element,
419 * we can be sure that n is not reduced to
420 * nothingness by this move, _unless_ it was
421 * the very first node, ie the root of the
422 * tree. In that case we remove the now-empty
423 * root and replace it with its single large
424 * child as shown.)
425 */
426 node234 *sib;
427 int j;
428
429 if (ki > 0)
430 ki--;
431 sib = n->kids[ki];
432 sub = n->kids[ki+1];
433
434 sub->kids[3] = sub->kids[1];
435 sub->elems[2] = sub->elems[0];
436 sub->kids[2] = sub->kids[0];
437 sub->elems[1] = n->elems[ki];
438 sub->kids[1] = sib->kids[1];
100122a9 439 if (sub->kids[1]) sub->kids[1]->parent = sub;
febd9a0f 440 sub->elems[0] = sib->elems[0];
441 sub->kids[0] = sib->kids[0];
100122a9 442 if (sub->kids[0]) sub->kids[0]->parent = sub;
febd9a0f 443
444 sfree(sib);
445
446 /*
447 * That's built the big node in sub. Now we
448 * need to remove the reference to sib in n.
449 */
450 for (j = ki; j < 3 && n->kids[j+1]; j++) {
451 n->kids[j] = n->kids[j+1];
452 n->elems[j] = j<2 ? n->elems[j+1] : NULL;
453 }
454 n->kids[j] = NULL;
455 if (j < 3) n->elems[j] = NULL;
456 LOG((" case 3b\n"));
457
458 if (!n->elems[0]) {
459 /*
460 * The root is empty and needs to be
461 * removed.
462 */
463 LOG((" shifting root!\n"));
464 t->root = sub;
465 sub->parent = NULL;
466 sfree(n);
467 }
468 }
469 }
470 n = sub;
471 }
472 if (ei==-1)
473 return; /* nothing to do; `already removed' */
474
475 /*
476 * Treat special case: this is the one remaining item in
477 * the tree. n is the tree root (no parent), has one
478 * element (no elems[1]), and has no kids (no kids[0]).
479 */
480 if (!n->parent && !n->elems[1] && !n->kids[0]) {
481 LOG((" removed last element in tree\n"));
482 sfree(n);
483 t->root = NULL;
484 return;
485 }
486
487 /*
488 * Now we have the element we want, as n->elems[ei], and we
489 * have also arranged for that element not to be the only
490 * one in its node. So...
491 */
492
493 if (!n->kids[0] && n->elems[1]) {
494 /*
495 * Case 1. n is a leaf node with more than one element,
496 * so it's _really easy_. Just delete the thing and
497 * we're done.
498 */
499 int i;
500 LOG((" case 1\n"));
a4a19e73 501 for (i = ei; i < 2 && n->elems[i+1]; i++)
febd9a0f 502 n->elems[i] = n->elems[i+1];
503 n->elems[i] = NULL;
504 return; /* finished! */
505 } else if (n->kids[ei]->elems[1]) {
506 /*
507 * Case 2a. n is an internal node, and the root of the
508 * subtree to the left of e has more than one element.
509 * So find the predecessor p to e (ie the largest node
510 * in that subtree), place it where e currently is, and
511 * then start the deletion process over again on the
512 * subtree with p as target.
513 */
514 node234 *m = n->kids[ei];
515 void *target;
516 LOG((" case 2a\n"));
517 while (m->kids[0]) {
518 m = (m->kids[3] ? m->kids[3] :
519 m->kids[2] ? m->kids[2] :
520 m->kids[1] ? m->kids[1] : m->kids[0]);
521 }
522 target = (m->elems[2] ? m->elems[2] :
523 m->elems[1] ? m->elems[1] : m->elems[0]);
524 n->elems[ei] = target;
525 n = n->kids[ei];
526 e = target;
527 } else if (n->kids[ei+1]->elems[1]) {
528 /*
529 * Case 2b, symmetric to 2a but s/left/right/ and
530 * s/predecessor/successor/. (And s/largest/smallest/).
531 */
532 node234 *m = n->kids[ei+1];
533 void *target;
534 LOG((" case 2b\n"));
535 while (m->kids[0]) {
536 m = m->kids[0];
537 }
538 target = m->elems[0];
539 n->elems[ei] = target;
540 n = n->kids[ei+1];
541 e = target;
542 } else {
543 /*
544 * Case 2c. n is an internal node, and the subtrees to
545 * the left and right of e both have only one element.
546 * So combine the two subnodes into a single big node
547 * with their own elements on the left and right and e
548 * in the middle, then restart the deletion process on
549 * that subtree, with e still as target.
550 */
551 node234 *a = n->kids[ei], *b = n->kids[ei+1];
552 int j;
553
554 LOG((" case 2c\n"));
555 a->elems[1] = n->elems[ei];
556 a->kids[2] = b->kids[0];
100122a9 557 if (a->kids[2]) a->kids[2]->parent = a;
febd9a0f 558 a->elems[2] = b->elems[0];
559 a->kids[3] = b->kids[1];
100122a9 560 if (a->kids[3]) a->kids[3]->parent = a;
febd9a0f 561 sfree(b);
562 /*
563 * That's built the big node in a, and destroyed b. Now
564 * remove the reference to b (and e) in n.
565 */
566 for (j = ei; j < 2 && n->elems[j+1]; j++) {
567 n->elems[j] = n->elems[j+1];
568 n->kids[j+1] = n->kids[j+2];
569 }
570 n->elems[j] = NULL;
571 n->kids[j+1] = NULL;
572 /*
573 * Now go round the deletion process again, with n
574 * pointing at the new big node and e still the same.
575 */
576 n = a;
577 }
578 }
579}
580
581/*
582 * Iterate over the elements of a tree234, in order.
583 */
584void *first234(tree234 *t, enum234 *e) {
585 node234 *n = t->root;
586 if (!n)
587 return NULL;
588 while (n->kids[0])
589 n = n->kids[0];
590 e->node = n;
591 e->posn = 0;
592 return n->elems[0];
593}
594
595void *next234(enum234 *e) {
596 node234 *n = e->node;
597 int pos = e->posn;
598
599 if (n->kids[pos+1]) {
600 n = n->kids[pos+1];
601 while (n->kids[0])
602 n = n->kids[0];
603 e->node = n;
604 e->posn = 0;
605 return n->elems[0];
606 }
607
6aff1005 608 if (pos < 2 && n->elems[pos+1]) {
609 e->posn = pos+1;
610 return n->elems[e->posn];
febd9a0f 611 }
612
613 do {
614 node234 *nn = n->parent;
615 if (nn == NULL)
616 return NULL; /* end of tree */
617 pos = (nn->kids[0] == n ? 0 :
618 nn->kids[1] == n ? 1 :
619 nn->kids[2] == n ? 2 : 3);
620 n = nn;
621 } while (pos == 3 || n->kids[pos+1] == NULL);
622
623 e->node = n;
624 e->posn = pos;
625 return n->elems[pos];
626}
627
628#ifdef TEST
629
630int pnode(node234 *n, int level) {
631 printf("%*s%p\n", level*4, "", n);
632 if (n->kids[0]) pnode(n->kids[0], level+1);
633 if (n->elems[0]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[0]);
634 if (n->kids[1]) pnode(n->kids[1], level+1);
635 if (n->elems[1]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[1]);
636 if (n->kids[2]) pnode(n->kids[2], level+1);
637 if (n->elems[2]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[2]);
638 if (n->kids[3]) pnode(n->kids[3], level+1);
639}
640int ptree(tree234 *t) {
641 if (t->root)
642 pnode(t->root, 0);
643 else
644 printf("empty tree\n");
645}
646
647int cmp(void *av, void *bv) {
648 char *a = (char *)av;
649 char *b = (char *)bv;
650 return strcmp(a, b);
651}
652
653int main(void) {
654 tree234 *t = newtree234(cmp);
655
656 add234(t, "Richard");
657 add234(t, "Of");
658 add234(t, "York");
659 add234(t, "Gave");
660 add234(t, "Battle");
661 add234(t, "In");
662 add234(t, "Vain");
663 add234(t, "Rabbits");
664 add234(t, "On");
665 add234(t, "Your");
666 add234(t, "Garden");
667 add234(t, "Bring");
668 add234(t, "Invisible");
669 add234(t, "Vegetables");
670
671 ptree(t);
672 del234(t, find234(t, "Richard", NULL));
673 ptree(t);
674 del234(t, find234(t, "Of", NULL));
675 ptree(t);
676 del234(t, find234(t, "York", NULL));
677 ptree(t);
678 del234(t, find234(t, "Gave", NULL));
679 ptree(t);
680 del234(t, find234(t, "Battle", NULL));
681 ptree(t);
682 del234(t, find234(t, "In", NULL));
683 ptree(t);
684 del234(t, find234(t, "Vain", NULL));
685 ptree(t);
686 del234(t, find234(t, "Rabbits", NULL));
687 ptree(t);
688 del234(t, find234(t, "On", NULL));
689 ptree(t);
690 del234(t, find234(t, "Your", NULL));
691 ptree(t);
692 del234(t, find234(t, "Garden", NULL));
693 ptree(t);
694 del234(t, find234(t, "Bring", NULL));
695 ptree(t);
696 del234(t, find234(t, "Invisible", NULL));
697 ptree(t);
698 del234(t, find234(t, "Vegetables", NULL));
699 ptree(t);
700}
701#endif