X-Git-Url: https://git.distorted.org.uk/u/mdw/catacomb/blobdiff_plain/d3409d5ecf2492cff862616de72a580d1a8e8dc0..b817bfc642225b8c3c0b6a7e42d1fb949b61a606:/mpmont.h diff --git a/mpmont.h b/mpmont.h index 42aa17c..b931162 100644 --- a/mpmont.h +++ b/mpmont.h @@ -1,6 +1,6 @@ /* -*-c-*- * - * $Id: mpmont.h,v 1.1 1999/11/17 18:02:16 mdw Exp $ + * $Id: mpmont.h,v 1.8 2004/04/08 01:36:15 mdw Exp $ * * Montgomery reduction * @@ -27,16 +27,8 @@ * MA 02111-1307, USA. */ -/*----- Revision history --------------------------------------------------* - * - * $Log: mpmont.h,v $ - * Revision 1.1 1999/11/17 18:02:16 mdw - * New multiprecision integer arithmetic suite. - * - */ - -#ifndef MPMONT_H -#define MPMONT_H +#ifndef CATACOMB_MPMONT_H +#define CATACOMB_MPMONT_H #ifdef __cplusplus extern "C" { @@ -44,11 +36,11 @@ /*----- Header files ------------------------------------------------------*/ -#ifndef MP_H +#ifndef CATACOMB_MP_H # include "mp.h" #endif -/*----- What's going on here? ---------------------------------------------* +/*----- Notes on Montgomery reduction -------------------------------------* * * Given a little bit of precomputation, Montgomery reduction enables modular * reductions of products to be calculated rather rapidly, without recourse @@ -57,7 +49,9 @@ * Before starting, you need to do a little work. In particular, the * following things need to be worked out: * - * * %$m$%, which is the modulus you'll be working with. + * * %$m$%, which is the modulus you'll be working with. This must be odd, + * otherwise the whole thing doesn't work. You're better off using + * Barrett reduction if your modulus might be even. * * * %$b$%, the radix of the number system you're in (here, it's * @MPW_MAX + 1@). @@ -73,8 +67,8 @@ * The result of a Montgomery reduction of %$x$% is %$x R^{-1} \bmod m$%, * which doesn't look ever-so useful. The trick is to initially apply a * factor of %$R$% to all of your numbers so that when you multiply and - * perform a Montgomery reduction you get %$(xR \cdot yR)R^{-1} \bmod m$%, - * which is just %$xyR \bmod m$%. Thanks to distributivity, even additions + * perform a Montgomery reduction you get %$(x R \cdot y R) R^{-1} \bmod m$%, + * which is just %$x y R \bmod m$%. Thanks to distributivity, even additions * and subtractions can be performed on numbers in this form -- the extra * factor of %$R$% just runs through all the calculations until it's finally * stripped out by a final reduction operation. @@ -86,8 +80,8 @@ typedef struct mpmont { mp *m; /* Modulus */ - mpw mi; /* %$-m^{-1} \bmod b$% */ - size_t shift; /* %$\log_2 R$% */ + mp *mi; /* %$-m^{-1} \bmod R$% */ + size_t n; /* %$\log_b R$% */ mp *r, *r2; /* %$R \bmod m$%, %$R^2 \bmod m$% */ } mpmont; @@ -101,10 +95,105 @@ typedef struct mpmont { * Returns: --- * * Use: Initializes a Montgomery reduction context ready for use. + * The argument @m@ must be a positive odd integer. */ extern void mpmont_create(mpmont */*mm*/, mp */*m*/); +/* --- @mpmont_destroy@ --- * + * + * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context + * + * Returns: --- + * + * Use: Disposes of a context when it's no longer of any use to + * anyone. + */ + +extern void mpmont_destroy(mpmont */*mm*/); + +/* --- @mpmont_reduce@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = destination + * @mp *a@ = source, assumed positive + * + * Returns: Result, %$a R^{-1} \bmod m$%. + */ + +extern mp *mpmont_reduce(mpmont */*mm*/, mp */*d*/, mp */*a*/); + +/* --- @mpmont_mul@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = destination + * @mp *a, *b@ = sources, assumed positive + * + * Returns: Result, %$a b R^{-1} \bmod m$%. + */ + +extern mp *mpmont_mul(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*b*/); + +/* --- @mpmont_expr@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = fake destination + * @mp *a@ = base + * @mp *e@ = exponent + * + * Returns: Result, %$(a R^{-1})^e R \bmod m$%. This is useful if + * further modular arithmetic is to be performed on the result. + */ + +extern mp *mpmont_expr(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/); + +/* --- @mpmont_exp@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = fake destination + * @mp *a@ = base + * @mp *e@ = exponent + * + * Returns: Result, %$a^e \bmod m$%. + */ + +extern mp *mpmont_exp(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/); + +/* --- @mpmont_mexpr@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = fake destination + * @const mp_expfactor *f@ = pointer to array of factors + * @size_t n@ = number of factors supplied + * + * Returns: If the bases are %$g_0, g_1, \ldots, g_{n-1}$% and the + * exponents are %$e_0, e_1, \ldots, e_{n-1}$% then the result + * is: + * + * %$g_0^{e_0} g_1^{e_1} \ldots g_{n-1}^{e_{n-1}} \bmod m$% + * + * + * except that the %$g_i$% and result are in Montgomery form. + */ + +extern mp *mpmont_mexpr(mpmont */*mm*/, mp */*d*/, + const mp_expfactor */*f*/, size_t /*n*/); + +/* --- @mpmont_mexp@ --- * + * + * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context + * @mp *d@ = fake destination + * @const mp_expfactor *f@ = pointer to array of factors + * @size_t n@ = number of factors supplied + * + * Returns: Product of bases raised to exponents, all mod @m@. + * + * Use: Convenient interface over @mpmont_mexpr@. + */ + +extern mp *mpmont_mexp(mpmont */*mm*/, mp */*d*/, + const mp_expfactor */*f*/, size_t /*n*/); + /*----- That's all, folks -------------------------------------------------*/ #ifdef __cplusplus