X-Git-Url: https://git.distorted.org.uk/u/mdw/catacomb/blobdiff_plain/45c0fd363937c6e9b05da04a9167e9912c05ca0c..30ac115b90b0ed66eed17b722a76d3e7e6e4531c:/ec-info.c diff --git a/ec-info.c b/ec-info.c index 474691b..0e225a7 100644 --- a/ec-info.c +++ b/ec-info.c @@ -328,46 +328,17 @@ void ec_freeinfo(ec_info *ei) * Use: Checks an elliptic curve according to the rules in SEC1. */ -static int primeeltp(mp *x, field *f) -{ - return (!MP_NEGP(x) && MP_CMP(x, <, f->m)); -} - -static const char *primecheck(const ec_info *ei, grand *gr) +static const char *gencheck(const ec_info *ei, grand *gr, mp *q) { ec_curve *c = ei->c; field *f = c->f; - int i; + int i, j, n; + mp *qq; + mp *nn; mp *x, *y; ec p; int rc; - /* --- Check %$p$% is an odd prime --- */ - - if (!pgen_primep(f->m, gr)) return ("p not prime"); - - /* --- Check %$a$%, %$b$%, %$G_x$% and %$G_y$% are in %$[0, p)$% --- */ - - if (!primeeltp(c->a, f)) return ("a out of range"); - if (!primeeltp(c->b, f)) return ("b out of range"); - if (!primeeltp(ei->g.x, f)) return ("G_x out of range"); - if (!primeeltp(ei->g.x, f)) return ("G_y out of range"); - - /* --- Check %$4 a^3 + 27 b^2 \not\equiv 0 \pmod{p}$% --- */ - - x = F_SQR(f, MP_NEW, c->a); - x = F_MUL(f, x, x, c->a); - x = F_QDL(f, x, x); - y = F_SQR(f, MP_NEW, c->b); - y = F_TPL(f, y, y); - y = F_TPL(f, y, y); - y = F_TPL(f, y, y); - x = F_ADD(f, x, x, y); - rc = F_ZEROP(f, x); - MP_DROP(x); - MP_DROP(y); - if (rc) return ("not an elliptic curve"); - /* --- Check %$G \in E$% --- */ if (EC_ATINF(&ei->g)) return ("generator at infinity"); @@ -377,24 +348,54 @@ static const char *primecheck(const ec_info *ei, grand *gr) if (!pgen_primep(ei->r, gr)) return ("generator order not prime"); - /* --- Check %$h = \lfloor (\sqrt{p} + 1)^2/r \rlfoor$% --- * + /* --- Check that the cofactor is correct --- * + * + * Let %$q$% be the size of the field, and let %$n = h r = \#E(\gf{q})$% be + * the number of %$\gf{q}$%-rational points on our curve. Hasse's theorem + * tells us that + * + * %$|q + 1 - n| \le 2\sqrt{q}$% + * + * or, if we square both sides, + * + * %$(q + 1 - n)^2 \le 4 q$%. + * + * We'd like the cofactor to be uniquely determined by this equation, which + * is possible as long as it's not too big. (If it is, we have to mess + * about with Weil pairings, which is no fun.) For this, we need the + * following inequalities: + * + * * %$A = (q + 1 - n)^2 \le 4 q$% (both lower and upper bounds from + * Hasse's theorem); * - * This seems to work with the approximate-sqrt in the library, but might - * not be so good in some cases. Throw in some extra significate figures - * for good measure. + * * %$B = (q + 1 - n - r)^2 > 4 q$% (check %$h - 1$% isn't possible); + * and + * + * * %$C = (q + 1 - n + r)^2 > 4 q$% (check %$h + 1$% isn't possible). */ - x = mp_lsl(MP_NEW, f->m, 128); - x = mp_sqrt(x, x); - y = mp_lsl(MP_NEW, MP_ONE, 64); - x = mp_add(x, x, y); - x = mp_sqr(x, x); - mp_div(&x, 0, x, ei->r); - x = mp_lsr(x, x, 128); - rc = MP_EQ(x, ei->h); + rc = 1; + qq = mp_add(MP_NEW, q, MP_ONE); + nn = mp_mul(MP_NEW, ei->r, ei->h); + nn = mp_sub(nn, qq, nn); + qq = mp_lsl(qq, q, 2); + + y = mp_sqr(MP_NEW, nn); + if (MP_CMP(y, >, qq)) rc = 0; + + x = mp_sub(MP_NEW, nn, ei->r); + y = mp_sqr(y, x); + if (MP_CMP(y, <=, qq)) rc = 0; + + x = mp_add(x, nn, ei->r); + y = mp_sqr(y, x); + if (MP_CMP(y, <=, qq)) rc = 0; + MP_DROP(x); MP_DROP(y); - if (!rc) return ("incorrect cofactor"); + MP_DROP(nn); + MP_DROP(qq); + if (!rc) return ("incorrect or ambiguous cofactor"); /* --- Check %$n G = O$% --- */ @@ -404,41 +405,82 @@ static const char *primecheck(const ec_info *ei, grand *gr) EC_DESTROY(&p); if (!rc) return ("incorrect group order"); - /* --- Check that %$p^B \not\equiv 1 \pmod{r}$% for %$1 \le B < 20$% --- * + /* --- Check %$q^B \not\equiv 1 \pmod{r}$% for %$1 \le B < 20$% --- * * - * The spec says %$q$%, not %$p$%, but I think that's a misprint. + * Actually, give up if %$q^B \ge 2^{2000}$% because that's probably + * good enough for jazz. */ x = MP_NEW; - mp_div(0, &x, f->m, ei->r); - i = 20; - while (i) { - if (MP_EQ(x, MP_ONE)) break; + mp_div(0, &x, q, ei->r); + n = mp_bits(ei->r) - 1; + for (i = 0, j = n; i < 20; i++, j += n) { + if (j >= 2000) + break; + if (MP_EQ(x, MP_ONE)) { + MP_DROP(x); + return("curve embedding degree too low"); + } x = mp_mul(x, x, f->m); mp_div(0, &x, x, ei->r); - i--; } MP_DROP(x); - if (i) return ("curve is weak"); - - /* --- Check %$0 < h \le 4$% --- */ - - if (MP_CMP(ei->h, <, MP_ONE) || MP_CMP(ei->h, >, MP_FOUR)) - return ("cofactor out of range"); /* --- Done --- */ return (0); } -static const char *bincheck(const ec_info *ei, grand *gr) +static int primeeltp(mp *x, field *f) + { return (!MP_NEGP(x) && MP_CMP(x, <, f->m)); } + +static const char *primecheck(const ec_info *ei, grand *gr) { ec_curve *c = ei->c; field *f = c->f; - int i; mp *x, *y; - ec p; int rc; + const char *err; + + /* --- Check %$p$% is an odd prime --- */ + + if (!pgen_primep(f->m, gr)) return ("p not prime"); + + /* --- Check %$a$%, %$b$%, %$G_x$% and %$G_y$% are in %$[0, p)$% --- */ + + if (!primeeltp(c->a, f)) return ("a out of range"); + if (!primeeltp(c->b, f)) return ("b out of range"); + if (!primeeltp(ei->g.x, f)) return ("G_x out of range"); + if (!primeeltp(ei->g.x, f)) return ("G_y out of range"); + + /* --- Check %$4 a^3 + 27 b^2 \not\equiv 0 \pmod{p}$% --- */ + + x = F_SQR(f, MP_NEW, c->a); + x = F_MUL(f, x, x, c->a); + x = F_QDL(f, x, x); + y = F_SQR(f, MP_NEW, c->b); + y = F_TPL(f, y, y); + y = F_TPL(f, y, y); + y = F_TPL(f, y, y); + x = F_ADD(f, x, x, y); + rc = F_ZEROP(f, x); + MP_DROP(x); + MP_DROP(y); + if (rc) return ("not an elliptic curve"); + + /* --- Now do the general checks --- */ + + err = gencheck(ei, gr, f->m); + return (err); +} + +static const char *bincheck(const ec_info *ei, grand *gr) +{ + ec_curve *c = ei->c; + field *f = c->f; + mp *x; + int rc; + const char *err; /* --- Check that %$m$% is prime --- */ @@ -462,64 +504,12 @@ static const char *bincheck(const ec_info *ei, grand *gr) if (F_ZEROP(f, c->b)) return ("b is zero"); - /* --- Check that %$G \in E$% --- */ - - if (EC_ATINF(&ei->g)) return ("generator at infinity"); - if (ec_check(c, &ei->g)) return ("generator not on curve"); - - /* --- Check %$r$% is prime --- */ - - if (!pgen_primep(ei->r, gr)) return ("generator order not prime"); - - /* --- Check %$h = \lfloor (\sqrt{2^m} + 1)^2/r \rlfoor$% --- * - * - * This seems to work with the approximate-sqrt in the library, but might - * not be so good in some cases. Throw in some extra significate figures - * for good measure. - */ - - x = mp_lsl(MP_NEW, MP_ONE, f->nbits + 128); - x = mp_sqrt(x, x); - y = mp_lsl(MP_NEW, MP_ONE, 64); - x = mp_add(x, x, y); - x = mp_sqr(x, x); - mp_div(&x, 0, x, ei->r); - x = mp_lsr(x, x, 128); - rc = MP_EQ(x, ei->h); - MP_DROP(x); - MP_DROP(y); - if (!rc) return ("incorrect cofactor"); - - /* --- Check %$n G = O$% --- */ - - EC_CREATE(&p); - ec_mul(c, &p, &ei->g, ei->r); - rc = EC_ATINF(&p); - EC_DESTROY(&p); - if (!rc) return ("incorrect group order"); - - /* --- Check %$2^{m B} \not\equiv 1 \pmod{r}$% for %$1 \le B < 20$% --- */ + /* --- Now do the general checks --- */ x = mp_lsl(MP_NEW, MP_ONE, f->nbits); - mp_div(0, &x, x, ei->r); - i = 20; - while (i) { - if (MP_EQ(x, MP_ONE)) break; - x = mp_mul(x, x, f->m); - mp_div(0, &x, x, ei->r); - i--; - } - MP_DROP(x); - if (i) return ("curve is weak"); - - /* --- Check %$0 < h \le 4$% --- */ - - if (MP_CMP(ei->h, <, MP_ONE) || MP_CMP(ei->h, >, MP_FOUR)) - return ("cofactor out of range"); - - /* --- Done --- */ - - return (0); + err = gencheck(ei, gr, x); + mp_drop(x); + return (err); } const char *ec_checkinfo(const ec_info *ei, grand *gr) @@ -561,6 +551,7 @@ int main(int argc, char *argv[]) ok = 0; } } + assert(mparena_count(MPARENA_GLOBAL) == 0); } } else { fputs("checking standard curves:", stdout); @@ -576,6 +567,7 @@ int main(int argc, char *argv[]) } else printf(" %s", ee->name); fflush(stdout); + assert(mparena_count(MPARENA_GLOBAL) == 0); } fputs(ok ? " ok\n" : " failed\n", stdout); }