f8b77f5e4d26490e9267ae6f21c9546bdde957de
[u/mdw/catacomb] / math / ec.c
1 /* -*-c-*-
2 *
3 * Elliptic curve definitions
4 *
5 * (c) 2001 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "ec.h"
31
32 /*----- Trivial wrappers --------------------------------------------------*/
33
34 /* --- @ec_samep@ --- *
35 *
36 * Arguments: @ec_curve *c, *d@ = two elliptic curves
37 *
38 * Returns: Nonzero if the curves are identical (not just isomorphic).
39 *
40 * Use: Checks for sameness of curves. This function does the full
41 * check, not just the curve-type-specific check done by the
42 * @sampep@ field operation.
43 */
44
45 int ec_samep(ec_curve *c, ec_curve *d)
46 {
47 return (c == d || (field_samep(c->f, d->f) &&
48 c->ops == d->ops && EC_SAMEP(c, d)));
49 }
50
51 /* --- @ec_create@ --- *
52 *
53 * Arguments: @ec *p@ = pointer to an elliptic-curve point
54 *
55 * Returns: The argument @p@.
56 *
57 * Use: Initializes a new point. The initial value is the additive
58 * identity (which is universal for all curves).
59 */
60
61 ec *ec_create(ec *p) { EC_CREATE(p); return (p); }
62
63 /* --- @ec_destroy@ --- *
64 *
65 * Arguments: @ec *p@ = pointer to an elliptic-curve point
66 *
67 * Returns: ---
68 *
69 * Use: Destroys a point, making it invalid.
70 */
71
72 void ec_destroy(ec *p) { EC_DESTROY(p); }
73
74 /* --- @ec_atinf@ --- *
75 *
76 * Arguments: @const ec *p@ = pointer to a point
77 *
78 * Returns: Nonzero if %$p = O$% is the point at infinity, zero
79 * otherwise.
80 */
81
82 int ec_atinf(const ec *p) { return (EC_ATINF(p)); }
83
84 /* --- @ec_setinf@ --- *
85 *
86 * Arguments: @ec *p@ = pointer to a point
87 *
88 * Returns: The argument @p@.
89 *
90 * Use: Sets the given point to be the point %$O$% at infinity.
91 */
92
93 ec *ec_setinf(ec *p) { EC_SETINF(p); return (p); }
94
95 /* --- @ec_copy@ --- *
96 *
97 * Arguments: @ec *d@ = pointer to destination point
98 * @const ec *p@ = pointer to source point
99 *
100 * Returns: The destination @d@.
101 *
102 * Use: Creates a copy of an elliptic curve point.
103 */
104
105 ec *ec_copy(ec *d, const ec *p) { EC_COPY(d, p); return (d); }
106
107 /* --- @ec_eq@ --- *
108 *
109 * Arguments: @const ec *p, *q@ = two points
110 *
111 * Returns: Nonzero if the points are equal. Compares external-format
112 * points.
113 */
114
115 int ec_eq(const ec *p, const ec *q) { return (EC_EQ(p, q)); }
116
117 /*----- Standard curve operations -----------------------------------------*/
118
119 /* --- @ec_stdsamep@ --- *
120 *
121 * Arguments: @ec_curve *c, *d@ = two elliptic curves
122 *
123 * Returns: Nonzero if the curves are identical (not just isomorphic).
124 *
125 * Use: Simple sameness check on @a@ and @b@ curve members.
126 */
127
128 int ec_stdsamep(ec_curve *c, ec_curve *d)
129 { return (MP_EQ(c->a, d->a) && MP_EQ(c->b, d->b)); }
130
131 /* --- @ec_idin@, @ec_idout@, @ec_idfix@ --- *
132 *
133 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
134 * @ec *d@ = pointer to the destination
135 * @const ec *p@ = pointer to a source point
136 *
137 * Returns: The destination @d@.
138 *
139 * Use: An identity operation if your curve has no internal
140 * representation. (The field internal representation is still
141 * used.)
142 */
143
144 ec *ec_idin(ec_curve *c, ec *d, const ec *p)
145 {
146 if (EC_ATINF(p))
147 EC_SETINF(d);
148 else {
149 field *f = c->f;
150 d->x = F_IN(f, d->x, p->x);
151 d->y = F_IN(f, d->y, p->y);
152 mp_drop(d->z); d->z = 0;
153 }
154 return (d);
155 }
156
157 ec *ec_idout(ec_curve *c, ec *d, const ec *p)
158 {
159 if (EC_ATINF(p))
160 EC_SETINF(d);
161 else {
162 field *f = c->f;
163 d->x = F_OUT(f, d->x, p->x);
164 d->y = F_OUT(f, d->y, p->y);
165 mp_drop(d->z); d->z = 0;
166 }
167 return (d);
168 }
169
170 ec *ec_idfix(ec_curve *c, ec *d, const ec *p)
171 { EC_COPY(d, p); return (d); }
172
173 /* --- @ec_projin@, @ec_projout@, @ec_projfix@ --- *
174 *
175 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
176 * @ec *d@ = pointer to the destination
177 * @const ec *p@ = pointer to a source point
178 *
179 * Returns: The destination @d@.
180 *
181 * Use: Conversion functions if your curve operations use a
182 * projective representation.
183 */
184
185 ec *ec_projin(ec_curve *c, ec *d, const ec *p)
186 {
187 if (EC_ATINF(p))
188 EC_SETINF(d);
189 else {
190 field *f = c->f;
191 d->x = F_IN(f, d->x, p->x);
192 d->y = F_IN(f, d->y, p->y);
193 mp_drop(d->z); d->z = MP_COPY(f->one);
194 }
195 return (d);
196 }
197
198 ec *ec_projout(ec_curve *c, ec *d, const ec *p)
199 {
200 if (EC_ATINF(p))
201 EC_SETINF(d);
202 else {
203 mp *x, *y, *z, *zz;
204 field *f = c->f;
205 if (p->z == f->one) {
206 d->x = F_OUT(f, d->x, p->x);
207 d->y = F_OUT(f, d->y, p->y);
208 } else {
209 z = F_INV(f, MP_NEW, p->z);
210 zz = F_SQR(f, MP_NEW, z);
211 z = F_MUL(f, z, zz, z);
212 x = F_MUL(f, d->x, p->x, zz);
213 y = F_MUL(f, d->y, p->y, z);
214 mp_drop(z);
215 mp_drop(zz);
216 d->x = F_OUT(f, x, x);
217 d->y = F_OUT(f, y, y);
218 }
219 mp_drop(d->z);
220 d->z = 0;
221 }
222 return (d);
223 }
224
225 ec *ec_projfix(ec_curve *c, ec *d, const ec *p)
226 {
227 if (EC_ATINF(p))
228 EC_SETINF(d);
229 else if (p->z == c->f->one)
230 EC_COPY(d, p);
231 else {
232 mp *z, *zz;
233 field *f = c->f;
234 z = F_INV(f, MP_NEW, p->z);
235 zz = F_SQR(f, MP_NEW, z);
236 z = F_MUL(f, z, zz, z);
237 d->x = F_MUL(f, d->x, p->x, zz);
238 d->y = F_MUL(f, d->y, p->y, z);
239 mp_drop(z);
240 mp_drop(zz);
241 mp_drop(d->z);
242 d->z = MP_COPY(f->one);
243 }
244 return (d);
245 }
246
247 /* --- @ec_stdsub@ --- *
248 *
249 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
250 * @ec *d@ = pointer to the destination
251 * @const ec *p, *q@ = the operand points
252 *
253 * Returns: The destination @d@.
254 *
255 * Use: Standard point subtraction operation, in terms of negation
256 * and addition. This isn't as efficient as a ready-made
257 * subtraction operator.
258 */
259
260 ec *ec_stdsub(ec_curve *c, ec *d, const ec *p, const ec *q)
261 {
262 ec t = EC_INIT;
263 EC_NEG(c, &t, q);
264 EC_FIX(c, &t, &t);
265 EC_ADD(c, d, p, &t);
266 EC_DESTROY(&t);
267 return (d);
268 }
269
270 /*----- Creating curves ---------------------------------------------------*/
271
272 /* --- @ec_destroycurve@ --- *
273 *
274 * Arguments: @ec_curve *c@ = pointer to an ellptic curve
275 *
276 * Returns: ---
277 *
278 * Use: Destroys a description of an elliptic curve.
279 */
280
281 void ec_destroycurve(ec_curve *c) { c->ops->destroy(c); }
282
283 /*----- Real arithmetic ---------------------------------------------------*/
284
285 /* --- @ec_find@ --- *
286 *
287 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
288 * @ec *d@ = pointer to the destination point
289 * @mp *x@ = a possible x-coordinate
290 *
291 * Returns: Zero if OK, nonzero if there isn't a point there.
292 *
293 * Use: Finds a point on an elliptic curve with a given x-coordinate.
294 */
295
296 ec *ec_find(ec_curve *c, ec *d, mp *x)
297 {
298 x = F_IN(c->f, MP_NEW, x);
299 if ((d = EC_FIND(c, d, x)) != 0)
300 EC_OUT(c, d, d);
301 MP_DROP(x);
302 return (d);
303 }
304
305 /* --- @ec_neg@ --- *
306 *
307 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
308 * @ec *d@ = pointer to the destination point
309 * @const ec *p@ = pointer to the operand point
310 *
311 * Returns: The destination point.
312 *
313 * Use: Computes the negation of the given point.
314 */
315
316 ec *ec_neg(ec_curve *c, ec *d, const ec *p)
317 { EC_IN(c, d, p); EC_NEG(c, d, d); return (EC_OUT(c, d, d)); }
318
319 /* --- @ec_add@ --- *
320 *
321 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
322 * @ec *d@ = pointer to the destination point
323 * @const ec *p, *q@ = pointers to the operand points
324 *
325 * Returns: ---
326 *
327 * Use: Adds two points on an elliptic curve.
328 */
329
330 ec *ec_add(ec_curve *c, ec *d, const ec *p, const ec *q)
331 {
332 ec pp = EC_INIT, qq = EC_INIT;
333 EC_IN(c, &pp, p);
334 EC_IN(c, &qq, q);
335 EC_ADD(c, d, &pp, &qq);
336 EC_OUT(c, d, d);
337 EC_DESTROY(&pp);
338 EC_DESTROY(&qq);
339 return (d);
340 }
341
342 /* --- @ec_sub@ --- *
343 *
344 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
345 * @ec *d@ = pointer to the destination point
346 * @const ec *p, *q@ = pointers to the operand points
347 *
348 * Returns: The destination @d@.
349 *
350 * Use: Subtracts one point from another on an elliptic curve.
351 */
352
353 ec *ec_sub(ec_curve *c, ec *d, const ec *p, const ec *q)
354 {
355 ec pp = EC_INIT, qq = EC_INIT;
356 EC_IN(c, &pp, p);
357 EC_IN(c, &qq, q);
358 EC_SUB(c, d, &pp, &qq);
359 EC_OUT(c, d, d);
360 EC_DESTROY(&pp);
361 EC_DESTROY(&qq);
362 return (d);
363 }
364
365 /* --- @ec_dbl@ --- *
366 *
367 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
368 * @ec *d@ = pointer to the destination point
369 * @const ec *p@ = pointer to the operand point
370 *
371 * Returns: ---
372 *
373 * Use: Doubles a point on an elliptic curve.
374 */
375
376 ec *ec_dbl(ec_curve *c, ec *d, const ec *p)
377 { EC_IN(c, d, p); EC_DBL(c, d, d); return (EC_OUT(c, d, d)); }
378
379 /* --- @ec_check@ --- *
380 *
381 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
382 * @const ec *p@ = pointer to the point
383 *
384 * Returns: Zero if OK, nonzero if this is an invalid point.
385 *
386 * Use: Checks that a point is actually on an elliptic curve.
387 */
388
389 int ec_check(ec_curve *c, const ec *p)
390 {
391 ec t = EC_INIT;
392 int rc;
393
394 if (EC_ATINF(p))
395 return (0);
396 EC_IN(c, &t, p);
397 rc = EC_CHECK(c, &t);
398 EC_DESTROY(&t);
399 return (rc);
400 }
401
402 /* --- @ec_rand@ --- *
403 *
404 * Arguments: @ec_curve *c@ = pointer to an elliptic curve
405 * @ec *d@ = pointer to the destination point
406 * @grand *r@ = random number source
407 *
408 * Returns: The destination @d@.
409 *
410 * Use: Finds a random point on the given curve.
411 */
412
413 ec *ec_rand(ec_curve *c, ec *d, grand *r)
414 {
415 mp *x = MP_NEW;
416 do x = F_RAND(c->f, x, r); while (!EC_FIND(c, d, x));
417 mp_drop(x);
418 if (grand_range(r, 2)) EC_NEG(c, d, d);
419 return (EC_OUT(c, d, d));
420 }
421
422 /*----- That's all, folks -------------------------------------------------*/