catcrypt.c, catsign.c: Shorten chunk sizes.
[u/mdw/catacomb] / ec-info.c
1 /* -*-c-*-
2 *
3 * $Id$
4 *
5 * Elliptic curve information management
6 *
7 * (c) 2004 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <mLib/darray.h>
33
34 #include "ec.h"
35 #include "ectab.h"
36 #include "gf.h"
37 #include "keysz.h"
38 #include "mpbarrett.h"
39 #include "pgen.h"
40 #include "primeiter.h"
41 #include "mprand.h"
42 #include "mpint.h"
43 #include "rabin.h"
44
45 /*----- Embedding degree checking -----------------------------------------*
46 *
47 * Let %$q = p^m$% be a prime power, and let %$E$% be an elliptic curve over
48 * %$\gf{q}$% with %$n = \#E(\gf{q}) = r h$% where %$r$% is prime. Then the
49 * Weil and Tate pairings can be used to map %$r$%-torsion points on
50 * %$E(\gf{q})$% onto the %$r$%-th roots of unity (i.e., the order-%$r$%
51 * subgroup) in an extension field %$\gf{p^k}$% of %$\gf{p}$% (%%\emph{not}%%
52 * of %$\gf{q}$% -- see [Hitt]). We call the smallest such %$k$% the
53 * %%\emph{embedding degree}%% of the curve %$E$%. The
54 * Menezes-Okamoto-Vanstone (MOV) attack solves the discrete log problem in
55 * %$E(\gf{q})$% by using the pairing and then applying index calculus to
56 * extract a discrete log in %$\gf{p^k}$%; obviously this only works if %$k$%
57 * is small enough.
58 *
59 * The usual check, suggested in, e.g., [P1363] or [SEC1], only covers
60 * extension fields %$\gf{q^\ell}$% of %$\gf{q}$%, which is fine when %$q$%
61 * is prime, but when we're dealing with binary fields it works less well.
62 * Indeed, as [Hitt] demonstrates, the embedding field can actually be
63 * %%\emph{smaller}%% than %$\gf{q}$%, and choosing %$m$% prime doesn't help
64 * (even though I previously thought it did).
65 *
66 * Define the %%\emph{embedding degree bound}%% %$B$% to be the smallest
67 * %$i$% such that discrete logs in %$\gf{p^i}$% are about as hard as in
68 * %$E(\gf{q})$%.
69 *
70 * The embedding group is a subgroup of the multiplicative group
71 * %$\gf{p^k}^*$% which contains %$p^k - 1$% elements; therefore we must have
72 * %$r \mid p^k - 1$%, or, equivalently, %$p^k \equiv 1 \pmod{r}$%.
73 *
74 * The recommended checking procedure, e.g., in [P1363], is just to check
75 * %$q^i \not\equiv 1 \pmod{r}$% for each %$0 < i < B$%. This is fast when
76 * you only consider extension fields of %$\gf{q}$%, since %$B$% is at most
77 * about 27. However, as noted above, this is inadequate when %$q$% is a
78 * prime power, and we must check all the extension fields of %$p$%. Now
79 * %$B$% can be about 15000, which is rather scarier -- we need a better
80 * algorithm.
81 *
82 * As noted, we must have %$p^k \equiv 1 \pmod{r}$%; but by minimality of
83 * %$k$%, we must have %$p^i \not\equiv 1 \pmod{r}$% for %$0 < i < k$%.
84 * Therefore %$p$% generates an order-%$k$% subgroup in %$\gf{r}^*$%, so we
85 * must have %$k \mid r - 1$%.
86 *
87 * Of course, factoring %$r - 1$% is a mug's game; but we're not interested
88 * in the complete factorization -- just the %$B$%-smooth portion. An
89 * algorithm suggests itself:
90 *
91 * 1. Extract the factors of %$r - 1$% which are less than %$B$%.
92 *
93 * 2. For each divisor %$d$% of %$r - 1$% less than %$B$% (which we can
94 * construct using this factorization), make sure that
95 * %$p^d \not\equiv 1 \pmod{r}$%.
96 *
97 * This takes a little while but not ever-so long.
98 *
99 * This is enough for cryptosystems based on the computational Diffie-
100 * Hellman problem to be secure. However, it's %%\emph{not}%% enough for the
101 * %%\emph{decisional}%% Diffie-Hellman problem to be hard; it appears we
102 * also need to hope that there aren't any suitable distortion maps with
103 * which one can solve the DDH problem. I don't know how to check for those
104 * at the moment.
105 *
106 * We'll take the subgroup order as indicative of the security level actually
107 * wanted. Then, to ensure security against the MOV attack, we must ensure
108 * that the embedding degree is sufficiently large that discrete logs in
109 * %$\gf{q^m}$% are at least as hard as discrete logs over the curve.
110 *
111 * We actually allow a small amount of slop in the conversions, in order to
112 * let people pick nice round numbers for their key lengths.
113 *
114 * References:
115 *
116 * [Hitt] L. Hitt, On an improved definition of embedding degree;
117 * http://eprint.iacr.org/2006/415
118 *
119 * [P1363] IEEE 1363-2000: Standard Specifications for Public Key
120 * Cryptography; http://grouper.ieee.org/groups/1363/P1363/index.html
121 *
122 * [SEC1] SEC 1: Elliptic Curve Cryptography;
123 * http://www.secg.org/download/aid-385/sec1_final.pdf
124 */
125
126 /* --- @movcheck@ --- *
127 *
128 * Arguments: @mp *r@ = curve subgroup order
129 * @mp *p@ = field characteristic
130 * @unsigned long B@ = embedding degree bound
131 *
132 * Returns: Zero if OK, nonzero if an embedding was found.
133 *
134 * Use: Checks a curve for embeddings with degree less than the
135 * stated bound %$B$%. See above for explanation and a
136 * description of the algorithm.
137 */
138
139 static int movcheck(mp *r, mp *p, unsigned long B)
140 {
141 mpmont mm;
142 mp *r1, *pp = MP_NEW, *t = MP_NEW, *u = MP_NEW, *v = MP_NEW, *tt;
143 struct factor {
144 unsigned long f;
145 unsigned c, e;
146 };
147 DA_DECL(factor_v, struct factor);
148 factor_v fv = DA_INIT;
149 size_t nf;
150 struct factor *ff;
151 primeiter pi;
152 mp *BB;
153 unsigned long d, f;
154 unsigned i, j;
155 int rc = 0;
156
157 /* --- Special case --- *
158 *
159 * If %$r = 2$% then (a) Montgomery reduction won't work, and (b) we have
160 * no security worth checking anyway. Otherwise we're guaranteed that
161 * %$r$% is a prime, so it must be odd.
162 */
163
164 if (MP_EQ(r, MP_TWO))
165 return (0);
166
167 /* --- First factor the %$B%-smooth portion of %$r - 1$% --- *
168 *
169 * We can generate prime numbers up to %$B$% efficiently, so trial division
170 * it is.
171 */
172
173 BB = mp_fromulong(MP_NEW, B);
174 r1 = mp_sub(MP_NEW, r, MP_ONE);
175 primeiter_create(&pi, 0);
176 for (;;) {
177 pp = primeiter_next(&pi, pp);
178 if (MP_CMP(pp, >, BB))
179 break;
180 mp_div(&u, &v, r1, pp);
181 if (!MP_ZEROP(v))
182 continue;
183 i = 0;
184 do {
185 tt = r1; r1 = u; u = tt; i++;
186 mp_div(&u, &v, r1, pp);
187 } while (MP_ZEROP(v));
188 DA_ENSURE(&fv, 1);
189 DA_UNSAFE_EXTEND(&fv, 1);
190 DA_LAST(&fv).f = mp_toulong(pp);
191 DA_LAST(&fv).e = i;
192 DA_LAST(&fv).c = 0;
193 }
194 MP_DROP(BB); MP_DROP(pp); primeiter_destroy(&pi);
195 nf = DA_LEN(&fv); ff = DA(&fv);
196
197 /* --- Now generate divisors of %$r - 1$% less than %$B$% --- *
198 *
199 * For each divisor %$d$%, check whether %$p^d \equiv 1 \pmod{r}$%.
200 */
201
202 mpmont_create(&mm, r);
203 u = mpmont_mul(&mm, u, p, mm.r2);
204 for (;;) {
205
206 /* --- Construct the divisor --- */
207
208 d = 1;
209 for (i = 0; i < nf; i++) {
210 f = ff[i].f; j = ff[i].c; if (!j) continue;
211 for (;;) {
212 if (f >= (B + d - 1)/d) goto toobig;
213 if (j & 1) d *= f;
214 j >>= 1; if (!j) break;
215 f *= f;
216 }
217 }
218 v = mp_fromulong(v, d);
219
220 /* --- Compute %$p^k \bmod r$% and check --- */
221
222 t = mpmont_expr(&mm, t, u, v);
223 if (MP_EQ(t, mm.r)) {
224 rc = -1;
225 break;
226 }
227
228 /* --- Step the divisors along --- */
229
230 toobig:
231 for (i = 0; i < nf; i++) {
232 if (ff[i].c < ff[i].e) {
233 ff[i].c++;
234 goto more;
235 }
236 ff[i].c = 0;
237 }
238 break;
239 more:;
240 }
241
242 /* --- Clear away the debris --- */
243
244 mpmont_destroy(&mm);
245 MP_DROP(t); MP_DROP(u); MP_DROP(v); MP_DROP(r1);
246 DA_DESTROY(&fv);
247 return (rc);
248 }
249
250 /*----- Main code ---------------------------------------------------------*/
251
252 /* --- @ec_curveparse@ --- *
253 *
254 * Arguments: @qd_parse *qd@ = parser context
255 *
256 * Returns: Elliptic curve pointer if OK, or null.
257 *
258 * Use: Parses an elliptic curve description, which has the form
259 *
260 * * a field description
261 * * an optional `;'
262 * * `prime', `primeproj', `bin', or `binproj'
263 * * an optional `:'
264 * * the %$a$% parameter
265 * * an optional `,'
266 * * the %$b$% parameter
267 */
268
269 ec_curve *ec_curveparse(qd_parse *qd)
270 {
271 mp *a = MP_NEW, *b = MP_NEW;
272 ec_curve *c;
273 field *f;
274
275 if ((f = field_parse(qd)) == 0) goto fail;
276 qd_delim(qd, ';');
277 switch (qd_enum(qd, "prime,primeproj,bin,binproj")) {
278 case 0:
279 if (F_TYPE(f) != FTY_PRIME) {
280 qd->e = "field not prime";
281 goto fail;
282 }
283 qd_delim(qd, ':');
284 if ((a = qd_getmp(qd)) == 0) goto fail;
285 qd_delim(qd, ',');
286 if ((b = qd_getmp(qd)) == 0) goto fail;
287 c = ec_prime(f, a, b);
288 break;
289 case 1:
290 if (F_TYPE(f) != FTY_PRIME) {
291 qd->e = "field not prime";
292 goto fail;
293 }
294 qd_delim(qd, ':');
295 if ((a = qd_getmp(qd)) == 0) goto fail;
296 qd_delim(qd, ',');
297 if ((b = qd_getmp(qd)) == 0) goto fail;
298 c = ec_primeproj(f, a, b);
299 break;
300 case 2:
301 if (F_TYPE(f) != FTY_BINARY) {
302 qd->e = "field not binary";
303 goto fail;
304 }
305 qd_delim(qd, ':');
306 if ((a = qd_getmp(qd)) == 0) goto fail;
307 qd_delim(qd, ',');
308 if ((b = qd_getmp(qd)) == 0) goto fail;
309 c = ec_bin(f, a, b);
310 break;
311 case 3:
312 if (F_TYPE(f) != FTY_BINARY) {
313 qd->e = "field not binary";
314 goto fail;
315 }
316 qd_delim(qd, ':');
317 if ((a = qd_getmp(qd)) == 0) goto fail;
318 qd_delim(qd, ',');
319 if ((b = qd_getmp(qd)) == 0) goto fail;
320 c = ec_binproj(f, a, b);
321 break;
322 default:
323 goto fail;
324 }
325 if (!c) {
326 qd->e = "bad curve parameters";
327 goto fail;
328 }
329 if (a) MP_DROP(a);
330 if (b) MP_DROP(b);
331 return (c);
332
333 fail:
334 if (f) F_DESTROY(f);
335 if (a) MP_DROP(a);
336 if (b) MP_DROP(b);
337 return (0);
338 }
339
340 /* --- @ec_ptparse@ --- *
341 *
342 * Arguments: @qd_parse *qd@ = parser context
343 * @ec *p@ = where to put the point
344 *
345 * Returns: The point address, or null.
346 *
347 * Use: Parses an elliptic curve point. This has the form
348 *
349 * * %$x$%-coordinate
350 * * optional `,'
351 * * %$y$%-coordinate
352 */
353
354 ec *ec_ptparse(qd_parse *qd, ec *p)
355 {
356 mp *x = MP_NEW, *y = MP_NEW;
357
358 if (qd_enum(qd, "inf") >= 0) {
359 EC_SETINF(p);
360 return (p);
361 }
362 if ((x = qd_getmp(qd)) == 0) goto fail;
363 qd_delim(qd, ',');
364 if ((y = qd_getmp(qd)) == 0) goto fail;
365 EC_DESTROY(p);
366 p->x = x;
367 p->y = y;
368 p->z = 0;
369 return (p);
370
371 fail:
372 if (x) MP_DROP(x);
373 if (y) MP_DROP(y);
374 return (0);
375 }
376
377 /* --- @ec_infofromdata@ --- *
378 *
379 * Arguments: @ec_info *ei@ = where to write the information
380 * @ecdata *ed@ = raw data
381 *
382 * Returns: ---
383 *
384 * Use: Loads elliptic curve information about one of the standard
385 * curves.
386 */
387
388 void ec_infofromdata(ec_info *ei, ecdata *ed)
389 {
390 field *f;
391
392 switch (ed->ftag) {
393 case FTAG_PRIME:
394 f = field_prime(&ed->p);
395 ei->c = ec_primeproj(f, &ed->a, &ed->b);
396 break;
397 case FTAG_NICEPRIME:
398 f = field_niceprime(&ed->p);
399 ei->c = ec_primeproj(f, &ed->a, &ed->b);
400 break;
401 case FTAG_BINPOLY:
402 f = field_binpoly(&ed->p);
403 ei->c = ec_binproj(f, &ed->a, &ed->b);
404 break;
405 case FTAG_BINNORM:
406 f = field_binnorm(&ed->p, &ed->beta);
407 ei->c = ec_binproj(f, &ed->a, &ed->b);
408 break;
409 default:
410 abort();
411 }
412
413 assert(f); assert(ei->c);
414 EC_CREATE(&ei->g); ei->g.x = &ed->gx; ei->g.y = &ed->gy; ei->g.z = 0;
415 ei->r = &ed->r; ei->h = &ed->h;
416 }
417
418 /* --- @ec_infoparse@ --- *
419 *
420 * Arguments: @qd_parse *qd@ = parser context
421 * @ec_info *ei@ = curve information block, currently
422 * uninitialized
423 *
424 * Returns: Zero on success, nonzero on failure.
425 *
426 * Use: Parses an elliptic curve information string, and stores the
427 * information in @ei@. This is either the name of a standard
428 * curve, or it has the form
429 *
430 * * elliptic curve description
431 * * optional `;'
432 * * common point
433 * * optional `:'
434 * * group order
435 * * optional `*'
436 * * cofactor
437 */
438
439 int ec_infoparse(qd_parse *qd, ec_info *ei)
440 {
441 ec_curve *c = 0;
442 field *f;
443 ec g = EC_INIT;
444 const ecentry *ee;
445 mp *r = MP_NEW, *h = MP_NEW;
446
447 for (ee = ectab; ee->name; ee++) {
448 if (qd_enum(qd, ee->name) >= 0) {
449 ec_infofromdata(ei, ee->data);
450 goto found;
451 }
452 }
453
454 if ((c = ec_curveparse(qd)) == 0) goto fail;
455 qd_delim(qd, ';'); if (!ec_ptparse(qd, &g)) goto fail;
456 qd_delim(qd, ':'); if ((r = qd_getmp(qd)) == 0) goto fail;
457 qd_delim(qd, '*'); if ((h = qd_getmp(qd)) == 0) goto fail;
458 ei->c = c; ei->g = g; ei->r = r; ei->h = h;
459
460 found:
461 return (0);
462
463 fail:
464 EC_DESTROY(&g);
465 if (r) MP_DROP(r);
466 if (h) MP_DROP(h);
467 if (c) { f = c->f; ec_destroycurve(c); F_DESTROY(f); }
468 return (-1);
469 }
470
471 /* --- @ec_getinfo@ --- *
472 *
473 * Arguments: @ec_info *ei@ = where to write the information
474 * @const char *p@ = string describing a curve
475 *
476 * Returns: Null on success, or a pointer to an error message.
477 *
478 * Use: Parses out information about a curve. The string is either a
479 * standard curve name, or a curve info string.
480 */
481
482 const char *ec_getinfo(ec_info *ei, const char *p)
483 {
484 qd_parse qd;
485
486 qd.p = p;
487 qd.e = 0;
488 if (ec_infoparse(&qd, ei))
489 return (qd.e);
490 if (!qd_eofp(&qd)) {
491 ec_freeinfo(ei);
492 return ("junk found at end of string");
493 }
494 return (0);
495 }
496
497 /* --- @ec_sameinfop@ --- *
498 *
499 * Arguments: @ec_info *ei, *ej@ = two elliptic curve parameter sets
500 *
501 * Returns: Nonzero if the curves are identical (not just isomorphic).
502 *
503 * Use: Checks for sameness of curve parameters.
504 */
505
506 int ec_sameinfop(ec_info *ei, ec_info *ej)
507 {
508 return (ec_samep(ei->c, ej->c) &&
509 MP_EQ(ei->r, ej->r) && MP_EQ(ei->h, ej->h) &&
510 EC_EQ(&ei->g, &ej->g));
511 }
512
513 /* --- @ec_freeinfo@ --- *
514 *
515 * Arguments: @ec_info *ei@ = elliptic curve information block to free
516 *
517 * Returns: ---
518 *
519 * Use: Frees the information block.
520 */
521
522 void ec_freeinfo(ec_info *ei)
523 {
524 field *f;
525
526 EC_DESTROY(&ei->g);
527 MP_DROP(ei->r);
528 MP_DROP(ei->h);
529 f = ei->c->f; ec_destroycurve(ei->c); F_DESTROY(f);
530 }
531
532 /* --- @ec_checkinfo@ --- *
533 *
534 * Arguments: @const ec_info *ei@ = elliptic curve information block
535 *
536 * Returns: Null if OK, or pointer to error message.
537 *
538 * Use: Checks an elliptic curve according to the rules in SEC1.
539 */
540
541 static const char *gencheck(const ec_info *ei, grand *gr, mp *q, mp *ch)
542 {
543 ec_curve *c = ei->c;
544 unsigned long qmbits, rbits, cbits, B;
545 mp *qq;
546 mp *nn;
547 mp *x, *y;
548 ec p;
549 int rc;
550
551 /* --- Check curve isn't anomalous --- */
552
553 if (MP_EQ(ei->r, q)) return ("curve is anomalous");
554
555 /* --- Check %$G \in E \setminus \{ 0 \}$% --- */
556
557 if (EC_ATINF(&ei->g)) return ("generator at infinity");
558 if (ec_check(c, &ei->g)) return ("generator not on curve");
559
560 /* --- Check %$r$% is prime --- */
561
562 if (!pgen_primep(ei->r, gr)) return ("generator order not prime");
563
564 /* --- Check that the cofactor is correct --- *
565 *
566 * Let %$q$% be the size of the field, and let %$n = h r = \#E(\gf{q})$% be
567 * the number of %$\gf{q}$%-rational points on our curve. Hasse's theorem
568 * tells us that
569 *
570 * %$|q + 1 - n| \le 2\sqrt{q}$%
571 *
572 * or, if we square both sides,
573 *
574 * %$(q + 1 - n)^2 \le 4 q$%.
575 *
576 * We'd like the cofactor to be uniquely determined by this equation, which
577 * is possible as long as it's not too big. (If it is, we have to mess
578 * about with Weil pairings, which is no fun.) For this, we need the
579 * following inequalities:
580 *
581 * * %$A = (q + 1 - n)^2 \le 4 q$% (both lower and upper bounds from
582 * Hasse's theorem);
583 *
584 * * %$B = (q + 1 - n - r)^2 > 4 q$% (check %$h - 1$% isn't possible);
585 * and
586 *
587 * * %$C = (q + 1 - n + r)^2 > 4 q$% (check %$h + 1$% isn't possible).
588 */
589
590 rc = 1;
591 qq = mp_add(MP_NEW, q, MP_ONE);
592 nn = mp_mul(MP_NEW, ei->r, ei->h);
593 nn = mp_sub(nn, qq, nn);
594 qq = mp_lsl(qq, q, 2);
595
596 y = mp_sqr(MP_NEW, nn);
597 if (MP_CMP(y, >, qq)) rc = 0;
598
599 x = mp_sub(MP_NEW, nn, ei->r);
600 y = mp_sqr(y, x);
601 if (MP_CMP(y, <=, qq)) rc = 0;
602
603 x = mp_add(x, nn, ei->r);
604 y = mp_sqr(y, x);
605 if (MP_CMP(y, <=, qq)) rc = 0;
606
607 MP_DROP(x);
608 MP_DROP(y);
609 MP_DROP(nn);
610 MP_DROP(qq);
611 if (!rc) return ("incorrect or ambiguous cofactor");
612
613 /* --- Check %$n G = 0$% --- */
614
615 EC_CREATE(&p);
616 ec_mul(c, &p, &ei->g, ei->r);
617 rc = EC_ATINF(&p);
618 EC_DESTROY(&p);
619 if (!rc) return ("incorrect group order");
620
621 /* --- Check the embedding degree --- */
622
623 rbits = mp_bits(ei->r);
624 cbits = mp_bits(ch);
625 qmbits = keysz_todl(keysz_fromec(rbits * 7/8));
626 B = (qmbits + cbits - 1)/cbits;
627 if (movcheck(ei->r, ch, B))
628 return("curve embedding degree too low");
629
630 /* --- Done --- */
631
632 return (0);
633 }
634
635 static int primeeltp(mp *x, field *f)
636 { return (!MP_NEGP(x) && MP_CMP(x, <, f->m)); }
637
638 static const char *primecheck(const ec_info *ei, grand *gr)
639 {
640 ec_curve *c = ei->c;
641 field *f = c->f;
642 mp *x, *y;
643 int rc;
644 const char *err;
645
646 /* --- Check %$p$% is an odd prime --- */
647
648 if (!pgen_primep(f->m, gr)) return ("p not prime");
649
650 /* --- Check %$a$%, %$b$%, %$G_x$% and %$G_y$% are in %$[0, p)$% --- */
651
652 if (!primeeltp(c->a, f)) return ("a out of range");
653 if (!primeeltp(c->b, f)) return ("b out of range");
654 if (!primeeltp(ei->g.x, f)) return ("G_x out of range");
655 if (!primeeltp(ei->g.x, f)) return ("G_y out of range");
656
657 /* --- Check %$4 a^3 + 27 b^2 \not\equiv 0 \pmod{p}$% --- */
658
659 x = F_SQR(f, MP_NEW, c->a);
660 x = F_MUL(f, x, x, c->a);
661 x = F_QDL(f, x, x);
662 y = F_SQR(f, MP_NEW, c->b);
663 y = F_TPL(f, y, y);
664 y = F_TPL(f, y, y);
665 y = F_TPL(f, y, y);
666 x = F_ADD(f, x, x, y);
667 rc = F_ZEROP(f, x);
668 MP_DROP(x);
669 MP_DROP(y);
670 if (rc) return ("not an elliptic curve");
671
672 /* --- Now do the general checks --- */
673
674 err = gencheck(ei, gr, f->m, f->m);
675 return (err);
676 }
677
678 static const char *bincheck(const ec_info *ei, grand *gr)
679 {
680 ec_curve *c = ei->c;
681 field *f = c->f;
682 mp *x;
683 int rc;
684 const char *err;
685
686 /* --- Check that %$m$% is prime --- */
687
688 x = mp_fromuint(MP_NEW, f->nbits);
689 rc = pfilt_smallfactor(x);
690 mp_drop(x);
691 if (rc != PGEN_DONE) return ("degree not prime");
692
693 /* --- Check that %$p$% is irreducible --- */
694
695 if (!gf_irreduciblep(f->m)) return ("p not irreducible");
696
697 /* --- Check that %$a, b, G_x, G_y$% have degree less than %$p$% --- */
698
699 if (mp_bits(c->a) > f->nbits) return ("a out of range");
700 if (mp_bits(c->b) > f->nbits) return ("a out of range");
701 if (mp_bits(ei->g.x) > f->nbits) return ("G_x out of range");
702 if (mp_bits(ei->g.y) > f->nbits) return ("G_y out of range");
703
704 /* --- Check that %$b \ne 0$% --- */
705
706 if (F_ZEROP(f, c->b)) return ("b is zero");
707
708 /* --- Now do the general checks --- */
709
710 x = mp_lsl(MP_NEW, MP_ONE, f->nbits);
711 err = gencheck(ei, gr, x, MP_TWO);
712 mp_drop(x);
713 return (err);
714 }
715
716 const char *ec_checkinfo(const ec_info *ei, grand *gr)
717 {
718 switch (F_TYPE(ei->c->f)) {
719 case FTY_PRIME: return (primecheck(ei, gr)); break;
720 case FTY_BINARY: return (bincheck(ei, gr)); break;
721 }
722 return ("unknown curve type");
723 }
724
725 /*----- Test rig ----------------------------------------------------------*/
726
727 #ifdef TEST_RIG
728
729 #include "fibrand.h"
730
731 int main(int argc, char *argv[])
732 {
733 const ecentry *ee;
734 const char *e;
735 int ok = 1;
736 int i;
737 grand *gr;
738
739 gr = fibrand_create(0);
740 if (argc > 1) {
741 for (i = 1; i < argc; i++) {
742 ec_info ei;
743 if ((e = ec_getinfo(&ei, argv[i])) != 0)
744 fprintf(stderr, "bad curve spec `%s': %s\n", argv[i], e);
745 else {
746 e = ec_checkinfo(&ei, gr);
747 ec_freeinfo(&ei);
748 if (!e)
749 printf("OK %s\n", argv[i]);
750 else {
751 printf("BAD %s: %s\n", argv[i], e);
752 ok = 0;
753 }
754 }
755 assert(mparena_count(MPARENA_GLOBAL) == 0);
756 }
757 } else {
758 fputs("checking standard curves:", stdout);
759 fflush(stdout);
760 for (ee = ectab; ee->name; ee++) {
761 ec_info ei;
762 ec_infofromdata(&ei, ee->data);
763 e = ec_checkinfo(&ei, gr);
764 ec_freeinfo(&ei);
765 if (e) {
766 printf(" [%s fails: %s]", ee->name, e);
767 ok = 0;
768 } else
769 printf(" %s", ee->name);
770 fflush(stdout);
771 assert(mparena_count(MPARENA_GLOBAL) == 0);
772 }
773 fputs(ok ? " ok\n" : " failed\n", stdout);
774 }
775 gr->ops->destroy(gr);
776 return (!ok);
777 }
778
779 #endif
780
781 /*----- That's all, folks -------------------------------------------------*/