f1cbbd9d3ae5e730f3857935249fb31eea00cdd7
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.17 2004/03/27 00:04:46 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.17 2004/03/27 00:04:46 mdw
34 * Implement efficient reduction for pleasant-looking primes.
35 *
36 * Revision 1.16 2003/05/16 09:09:24 mdw
37 * Fix @mp_lsl2c@. Turns out to be surprisingly tricky.
38 *
39 * Revision 1.15 2002/10/20 01:12:31 mdw
40 * Two's complement I/O fixes.
41 *
42 * Revision 1.14 2002/10/19 18:55:08 mdw
43 * Fix overflows in shift primitives.
44 *
45 * Revision 1.13 2002/10/19 17:56:50 mdw
46 * Fix bit operations. Test them (a bit) better.
47 *
48 * Revision 1.12 2002/10/06 22:52:50 mdw
49 * Pile of changes for supporting two's complement properly.
50 *
51 * Revision 1.11 2001/04/03 19:36:05 mdw
52 * Add some simple bitwise operations so that Perl can use them.
53 *
54 * Revision 1.10 2000/10/08 12:06:12 mdw
55 * Provide @mpx_ueq@ for rapidly testing equality of two integers.
56 *
57 * Revision 1.9 2000/06/26 07:52:50 mdw
58 * Portability fix for the bug fix.
59 *
60 * Revision 1.8 2000/06/25 12:59:02 mdw
61 * (mpx_udiv): Fix bug in quotient digit estimation.
62 *
63 * Revision 1.7 1999/12/22 15:49:07 mdw
64 * New function for division by a small integer.
65 *
66 * Revision 1.6 1999/11/20 22:43:44 mdw
67 * Integrate testing for MPX routines.
68 *
69 * Revision 1.5 1999/11/20 22:23:27 mdw
70 * Add function versions of some low-level macros with wider use.
71 *
72 * Revision 1.4 1999/11/17 18:04:09 mdw
73 * Add two's-complement functionality. Improve mpx_udiv a little by
74 * performing the multiplication of the divisor by q with the subtraction
75 * from r.
76 *
77 * Revision 1.3 1999/11/13 01:57:31 mdw
78 * Remove stray debugging code.
79 *
80 * Revision 1.2 1999/11/13 01:50:59 mdw
81 * Multiprecision routines finished and tested.
82 *
83 * Revision 1.1 1999/09/03 08:41:12 mdw
84 * Initial import.
85 *
86 */
87
88 /*----- Header files ------------------------------------------------------*/
89
90 #include <assert.h>
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94
95 #include <mLib/bits.h>
96
97 #include "mptypes.h"
98 #include "mpx.h"
99 #include "bitops.h"
100
101 /*----- Loading and storing -----------------------------------------------*/
102
103 /* --- @mpx_storel@ --- *
104 *
105 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
106 * @void *pp@ = pointer to octet array
107 * @size_t sz@ = size of octet array
108 *
109 * Returns: ---
110 *
111 * Use: Stores an MP in an octet array, least significant octet
112 * first. High-end octets are silently discarded if there
113 * isn't enough space for them.
114 */
115
116 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
117 {
118 mpw n, w = 0;
119 octet *p = pp, *q = p + sz;
120 unsigned bits = 0;
121
122 while (p < q) {
123 if (bits < 8) {
124 if (v >= vl) {
125 *p++ = U8(w);
126 break;
127 }
128 n = *v++;
129 *p++ = U8(w | n << bits);
130 w = n >> (8 - bits);
131 bits += MPW_BITS - 8;
132 } else {
133 *p++ = U8(w);
134 w >>= 8;
135 bits -= 8;
136 }
137 }
138 memset(p, 0, q - p);
139 }
140
141 /* --- @mpx_loadl@ --- *
142 *
143 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
144 * @const void *pp@ = pointer to octet array
145 * @size_t sz@ = size of octet array
146 *
147 * Returns: ---
148 *
149 * Use: Loads an MP in an octet array, least significant octet
150 * first. High-end octets are ignored if there isn't enough
151 * space for them.
152 */
153
154 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
155 {
156 unsigned n;
157 mpw w = 0;
158 const octet *p = pp, *q = p + sz;
159 unsigned bits = 0;
160
161 if (v >= vl)
162 return;
163 while (p < q) {
164 n = U8(*p++);
165 w |= n << bits;
166 bits += 8;
167 if (bits >= MPW_BITS) {
168 *v++ = MPW(w);
169 w = n >> (MPW_BITS - bits + 8);
170 bits -= MPW_BITS;
171 if (v >= vl)
172 return;
173 }
174 }
175 *v++ = w;
176 MPX_ZERO(v, vl);
177 }
178
179 /* --- @mpx_storeb@ --- *
180 *
181 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
182 * @void *pp@ = pointer to octet array
183 * @size_t sz@ = size of octet array
184 *
185 * Returns: ---
186 *
187 * Use: Stores an MP in an octet array, most significant octet
188 * first. High-end octets are silently discarded if there
189 * isn't enough space for them.
190 */
191
192 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
193 {
194 mpw n, w = 0;
195 octet *p = pp, *q = p + sz;
196 unsigned bits = 0;
197
198 while (q > p) {
199 if (bits < 8) {
200 if (v >= vl) {
201 *--q = U8(w);
202 break;
203 }
204 n = *v++;
205 *--q = U8(w | n << bits);
206 w = n >> (8 - bits);
207 bits += MPW_BITS - 8;
208 } else {
209 *--q = U8(w);
210 w >>= 8;
211 bits -= 8;
212 }
213 }
214 memset(p, 0, q - p);
215 }
216
217 /* --- @mpx_loadb@ --- *
218 *
219 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
220 * @const void *pp@ = pointer to octet array
221 * @size_t sz@ = size of octet array
222 *
223 * Returns: ---
224 *
225 * Use: Loads an MP in an octet array, most significant octet
226 * first. High-end octets are ignored if there isn't enough
227 * space for them.
228 */
229
230 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
231 {
232 unsigned n;
233 mpw w = 0;
234 const octet *p = pp, *q = p + sz;
235 unsigned bits = 0;
236
237 if (v >= vl)
238 return;
239 while (q > p) {
240 n = U8(*--q);
241 w |= n << bits;
242 bits += 8;
243 if (bits >= MPW_BITS) {
244 *v++ = MPW(w);
245 w = n >> (MPW_BITS - bits + 8);
246 bits -= MPW_BITS;
247 if (v >= vl)
248 return;
249 }
250 }
251 *v++ = w;
252 MPX_ZERO(v, vl);
253 }
254
255 /* --- @mpx_storel2cn@ --- *
256 *
257 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
258 * @void *pp@ = pointer to octet array
259 * @size_t sz@ = size of octet array
260 *
261 * Returns: ---
262 *
263 * Use: Stores a negative MP in an octet array, least significant
264 * octet first, as two's complement. High-end octets are
265 * silently discarded if there isn't enough space for them.
266 * This obviously makes the output bad.
267 */
268
269 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
270 {
271 unsigned c = 1;
272 unsigned b = 0;
273 mpw n, w = 0;
274 octet *p = pp, *q = p + sz;
275 unsigned bits = 0;
276
277 while (p < q) {
278 if (bits < 8) {
279 if (v >= vl) {
280 b = w;
281 break;
282 }
283 n = *v++;
284 b = w | n << bits;
285 w = n >> (8 - bits);
286 bits += MPW_BITS - 8;
287 } else {
288 b = w;
289 w >>= 8;
290 bits -= 8;
291 }
292 b = U8(~b + c);
293 c = c && !b;
294 *p++ = b;
295 }
296 while (p < q) {
297 b = U8(~b + c);
298 c = c && !b;
299 *p++ = b;
300 b = 0;
301 }
302 }
303
304 /* --- @mpx_loadl2cn@ --- *
305 *
306 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
307 * @const void *pp@ = pointer to octet array
308 * @size_t sz@ = size of octet array
309 *
310 * Returns: ---
311 *
312 * Use: Loads a negative MP in an octet array, least significant
313 * octet first, as two's complement. High-end octets are
314 * ignored if there isn't enough space for them. This probably
315 * means you made the wrong choice coming here.
316 */
317
318 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
319 {
320 unsigned n;
321 unsigned c = 1;
322 mpw w = 0;
323 const octet *p = pp, *q = p + sz;
324 unsigned bits = 0;
325
326 if (v >= vl)
327 return;
328 while (p < q) {
329 n = U8(~(*p++) + c);
330 c = c && !n;
331 w |= n << bits;
332 bits += 8;
333 if (bits >= MPW_BITS) {
334 *v++ = MPW(w);
335 w = n >> (MPW_BITS - bits + 8);
336 bits -= MPW_BITS;
337 if (v >= vl)
338 return;
339 }
340 }
341 *v++ = w;
342 MPX_ZERO(v, vl);
343 }
344
345 /* --- @mpx_storeb2cn@ --- *
346 *
347 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
348 * @void *pp@ = pointer to octet array
349 * @size_t sz@ = size of octet array
350 *
351 * Returns: ---
352 *
353 * Use: Stores a negative MP in an octet array, most significant
354 * octet first, as two's complement. High-end octets are
355 * silently discarded if there isn't enough space for them,
356 * which probably isn't what you meant.
357 */
358
359 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
360 {
361 mpw n, w = 0;
362 unsigned b = 0;
363 unsigned c = 1;
364 octet *p = pp, *q = p + sz;
365 unsigned bits = 0;
366
367 while (q > p) {
368 if (bits < 8) {
369 if (v >= vl) {
370 b = w;
371 break;
372 }
373 n = *v++;
374 b = w | n << bits;
375 w = n >> (8 - bits);
376 bits += MPW_BITS - 8;
377 } else {
378 b = w;
379 w >>= 8;
380 bits -= 8;
381 }
382 b = U8(~b + c);
383 c = c && !b;
384 *--q = b;
385 }
386 while (q > p) {
387 b = ~b + c;
388 c = c && !(b & 0xff);
389 *--q = b;
390 b = 0;
391 }
392 }
393
394 /* --- @mpx_loadb2cn@ --- *
395 *
396 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
397 * @const void *pp@ = pointer to octet array
398 * @size_t sz@ = size of octet array
399 *
400 * Returns: ---
401 *
402 * Use: Loads a negative MP in an octet array, most significant octet
403 * first as two's complement. High-end octets are ignored if
404 * there isn't enough space for them. This probably means you
405 * chose this function wrongly.
406 */
407
408 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
409 {
410 unsigned n;
411 unsigned c = 1;
412 mpw w = 0;
413 const octet *p = pp, *q = p + sz;
414 unsigned bits = 0;
415
416 if (v >= vl)
417 return;
418 while (q > p) {
419 n = U8(~(*--q) + c);
420 c = c && !n;
421 w |= n << bits;
422 bits += 8;
423 if (bits >= MPW_BITS) {
424 *v++ = MPW(w);
425 w = n >> (MPW_BITS - bits + 8);
426 bits -= MPW_BITS;
427 if (v >= vl)
428 return;
429 }
430 }
431 *v++ = w;
432 MPX_ZERO(v, vl);
433 }
434
435 /*----- Logical shifting --------------------------------------------------*/
436
437 /* --- @mpx_lsl@ --- *
438 *
439 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
440 * @const mpw *av, *avl@ = source vector base and limit
441 * @size_t n@ = number of bit positions to shift by
442 *
443 * Returns: ---
444 *
445 * Use: Performs a logical shift left operation on an integer.
446 */
447
448 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
449 {
450 size_t nw;
451 unsigned nb;
452
453 /* --- Trivial special case --- */
454
455 if (n == 0)
456 MPX_COPY(dv, dvl, av, avl);
457
458 /* --- Single bit shifting --- */
459
460 else if (n == 1) {
461 mpw w = 0;
462 while (av < avl) {
463 mpw t;
464 if (dv >= dvl)
465 goto done;
466 t = *av++;
467 *dv++ = MPW((t << 1) | w);
468 w = t >> (MPW_BITS - 1);
469 }
470 if (dv >= dvl)
471 goto done;
472 *dv++ = MPW(w);
473 MPX_ZERO(dv, dvl);
474 goto done;
475 }
476
477 /* --- Break out word and bit shifts for more sophisticated work --- */
478
479 nw = n / MPW_BITS;
480 nb = n % MPW_BITS;
481
482 /* --- Handle a shift by a multiple of the word size --- */
483
484 if (nb == 0) {
485 if (nw >= dvl - dv)
486 MPX_ZERO(dv, dvl);
487 else {
488 MPX_COPY(dv + nw, dvl, av, avl);
489 memset(dv, 0, MPWS(nw));
490 }
491 }
492
493 /* --- And finally the difficult case --- *
494 *
495 * This is a little convoluted, because I have to start from the end and
496 * work backwards to avoid overwriting the source, if they're both the same
497 * block of memory.
498 */
499
500 else {
501 mpw w;
502 size_t nr = MPW_BITS - nb;
503 size_t dvn = dvl - dv;
504 size_t avn = avl - av;
505
506 if (dvn <= nw) {
507 MPX_ZERO(dv, dvl);
508 goto done;
509 }
510
511 if (dvn > avn + nw) {
512 size_t off = avn + nw + 1;
513 MPX_ZERO(dv + off, dvl);
514 dvl = dv + off;
515 w = 0;
516 } else {
517 avl = av + dvn - nw;
518 w = *--avl << nb;
519 }
520
521 while (avl > av) {
522 mpw t = *--avl;
523 *--dvl = (t >> nr) | w;
524 w = t << nb;
525 }
526
527 *--dvl = w;
528 MPX_ZERO(dv, dvl);
529 }
530
531 done:;
532 }
533
534 /* --- @mpx_lslc@ --- *
535 *
536 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
537 * @const mpw *av, *avl@ = source vector base and limit
538 * @size_t n@ = number of bit positions to shift by
539 *
540 * Returns: ---
541 *
542 * Use: Performs a logical shift left operation on an integer, only
543 * it fills in the bits with ones instead of zeroes.
544 */
545
546 void mpx_lslc(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
547 {
548 size_t nw;
549 unsigned nb;
550
551 /* --- Trivial special case --- */
552
553 if (n == 0)
554 MPX_COPY(dv, dvl, av, avl);
555
556 /* --- Single bit shifting --- */
557
558 else if (n == 1) {
559 mpw w = 1;
560 while (av < avl) {
561 mpw t;
562 if (dv >= dvl)
563 goto done;
564 t = *av++;
565 *dv++ = MPW((t << 1) | w);
566 w = t >> (MPW_BITS - 1);
567 }
568 if (dv >= dvl)
569 goto done;
570 *dv++ = MPW(w);
571 MPX_ZERO(dv, dvl);
572 goto done;
573 }
574
575 /* --- Break out word and bit shifts for more sophisticated work --- */
576
577 nw = n / MPW_BITS;
578 nb = n % MPW_BITS;
579
580 /* --- Handle a shift by a multiple of the word size --- */
581
582 if (nb == 0) {
583 if (nw >= dvl - dv)
584 MPX_ONE(dv, dvl);
585 else {
586 MPX_COPY(dv + nw, dvl, av, avl);
587 MPX_ONE(dv, dv + nw);
588 }
589 }
590
591 /* --- And finally the difficult case --- *
592 *
593 * This is a little convoluted, because I have to start from the end and
594 * work backwards to avoid overwriting the source, if they're both the same
595 * block of memory.
596 */
597
598 else {
599 mpw w;
600 size_t nr = MPW_BITS - nb;
601 size_t dvn = dvl - dv;
602 size_t avn = avl - av;
603
604 if (dvn <= nw) {
605 MPX_ONE(dv, dvl);
606 goto done;
607 }
608
609 if (dvn > avn + nw) {
610 size_t off = avn + nw + 1;
611 MPX_ZERO(dv + off, dvl);
612 dvl = dv + off;
613 w = 0;
614 } else {
615 avl = av + dvn - nw;
616 w = *--avl << nb;
617 }
618
619 while (avl > av) {
620 mpw t = *--avl;
621 *--dvl = (t >> nr) | w;
622 w = t << nb;
623 }
624
625 *--dvl = (MPW_MAX >> nr) | w;
626 MPX_ONE(dv, dvl);
627 }
628
629 done:;
630 }
631
632 /* --- @mpx_lsr@ --- *
633 *
634 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
635 * @const mpw *av, *avl@ = source vector base and limit
636 * @size_t n@ = number of bit positions to shift by
637 *
638 * Returns: ---
639 *
640 * Use: Performs a logical shift right operation on an integer.
641 */
642
643 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
644 {
645 size_t nw;
646 unsigned nb;
647
648 /* --- Trivial special case --- */
649
650 if (n == 0)
651 MPX_COPY(dv, dvl, av, avl);
652
653 /* --- Single bit shifting --- */
654
655 else if (n == 1) {
656 mpw w = *av++ >> 1;
657 while (av < avl) {
658 mpw t;
659 if (dv >= dvl)
660 goto done;
661 t = *av++;
662 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
663 w = t >> 1;
664 }
665 if (dv >= dvl)
666 goto done;
667 *dv++ = MPW(w);
668 MPX_ZERO(dv, dvl);
669 goto done;
670 }
671
672 /* --- Break out word and bit shifts for more sophisticated work --- */
673
674 nw = n / MPW_BITS;
675 nb = n % MPW_BITS;
676
677 /* --- Handle a shift by a multiple of the word size --- */
678
679 if (nb == 0) {
680 if (nw >= avl - av)
681 MPX_ZERO(dv, dvl);
682 else
683 MPX_COPY(dv, dvl, av + nw, avl);
684 }
685
686 /* --- And finally the difficult case --- */
687
688 else {
689 mpw w;
690 size_t nr = MPW_BITS - nb;
691
692 av += nw;
693 w = av < avl ? *av++ : 0;
694 while (av < avl) {
695 mpw t;
696 if (dv >= dvl)
697 goto done;
698 t = *av++;
699 *dv++ = MPW((w >> nb) | (t << nr));
700 w = t;
701 }
702 if (dv < dvl) {
703 *dv++ = MPW(w >> nb);
704 MPX_ZERO(dv, dvl);
705 }
706 }
707
708 done:;
709 }
710
711 /*----- Bitwise operations ------------------------------------------------*/
712
713 /* --- @mpx_bitop@ --- *
714 *
715 * Arguments: @mpw *dv, *dvl@ = destination vector
716 * @const mpw *av, *avl@ = first source vector
717 * @const mpw *bv, *bvl@ = second source vector
718 *
719 * Returns: ---
720 *
721 * Use; Provides the dyadic boolean functions.
722 */
723
724 #define MPX_BITBINOP(string) \
725 \
726 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
727 const mpw *bv, const mpw *bvl) \
728 { \
729 MPX_SHRINK(av, avl); \
730 MPX_SHRINK(bv, bvl); \
731 \
732 while (dv < dvl) { \
733 mpw a, b; \
734 a = (av < avl) ? *av++ : 0; \
735 b = (bv < bvl) ? *bv++ : 0; \
736 *dv++ = B##string(a, b); \
737 } \
738 }
739
740 MPX_DOBIN(MPX_BITBINOP)
741
742 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
743 {
744 MPX_SHRINK(av, avl);
745
746 while (dv < dvl) {
747 mpw a;
748 a = (av < avl) ? *av++ : 0;
749 *dv++ = ~a;
750 }
751 }
752
753 /*----- Unsigned arithmetic -----------------------------------------------*/
754
755 /* --- @mpx_2c@ --- *
756 *
757 * Arguments: @mpw *dv, *dvl@ = destination vector
758 * @const mpw *v, *vl@ = source vector
759 *
760 * Returns: ---
761 *
762 * Use: Calculates the two's complement of @v@.
763 */
764
765 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
766 {
767 mpw c = 0;
768 while (dv < dvl && v < vl)
769 *dv++ = c = MPW(~*v++);
770 if (dv < dvl) {
771 if (c > MPW_MAX / 2)
772 c = MPW(~0);
773 while (dv < dvl)
774 *dv++ = c;
775 }
776 MPX_UADDN(dv, dvl, 1);
777 }
778
779 /* --- @mpx_ueq@ --- *
780 *
781 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
782 * @const mpw *bv, *bvl@ = second argument vector base and limit
783 *
784 * Returns: Nonzero if the two vectors are equal.
785 *
786 * Use: Performs an unsigned integer test for equality.
787 */
788
789 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
790 {
791 MPX_SHRINK(av, avl);
792 MPX_SHRINK(bv, bvl);
793 if (avl - av != bvl - bv)
794 return (0);
795 while (av < avl) {
796 if (*av++ != *bv++)
797 return (0);
798 }
799 return (1);
800 }
801
802 /* --- @mpx_ucmp@ --- *
803 *
804 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
805 * @const mpw *bv, *bvl@ = second argument vector base and limit
806 *
807 * Returns: Less than, equal to, or greater than zero depending on
808 * whether @a@ is less than, equal to or greater than @b@,
809 * respectively.
810 *
811 * Use: Performs an unsigned integer comparison.
812 */
813
814 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
815 {
816 MPX_SHRINK(av, avl);
817 MPX_SHRINK(bv, bvl);
818
819 if (avl - av > bvl - bv)
820 return (+1);
821 else if (avl - av < bvl - bv)
822 return (-1);
823 else while (avl > av) {
824 mpw a = *--avl, b = *--bvl;
825 if (a > b)
826 return (+1);
827 else if (a < b)
828 return (-1);
829 }
830 return (0);
831 }
832
833 /* --- @mpx_uadd@ --- *
834 *
835 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
836 * @const mpw *av, *avl@ = first addend vector base and limit
837 * @const mpw *bv, *bvl@ = second addend vector base and limit
838 *
839 * Returns: ---
840 *
841 * Use: Performs unsigned integer addition. If the result overflows
842 * the destination vector, high-order bits are discarded. This
843 * means that two's complement addition happens more or less for
844 * free, although that's more a side-effect than anything else.
845 * The result vector may be equal to either or both source
846 * vectors, but may not otherwise overlap them.
847 */
848
849 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
850 const mpw *bv, const mpw *bvl)
851 {
852 mpw c = 0;
853
854 while (av < avl || bv < bvl) {
855 mpw a, b;
856 mpd x;
857 if (dv >= dvl)
858 return;
859 a = (av < avl) ? *av++ : 0;
860 b = (bv < bvl) ? *bv++ : 0;
861 x = (mpd)a + (mpd)b + c;
862 *dv++ = MPW(x);
863 c = x >> MPW_BITS;
864 }
865 if (dv < dvl) {
866 *dv++ = c;
867 MPX_ZERO(dv, dvl);
868 }
869 }
870
871 /* --- @mpx_uaddn@ --- *
872 *
873 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
874 * @mpw n@ = other addend
875 *
876 * Returns: ---
877 *
878 * Use: Adds a small integer to a multiprecision number.
879 */
880
881 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
882
883 /* --- @mpx_uaddnlsl@ --- *
884 *
885 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
886 * @mpw a@ = second argument
887 * @unsigned o@ = offset in bits
888 *
889 * Returns: ---
890 *
891 * Use: Computes %$d + 2^o a$%. If the result overflows then
892 * high-order bits are discarded, as usual. We must have
893 * @0 < o < MPW_BITS@.
894 */
895
896 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
897 {
898 mpd x = (mpd)a << o;
899
900 while (x && dv < dvl) {
901 x += *dv;
902 *dv++ = MPW(x);
903 x >>= MPW_BITS;
904 }
905 }
906
907 /* --- @mpx_usub@ --- *
908 *
909 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
910 * @const mpw *av, *avl@ = first argument vector base and limit
911 * @const mpw *bv, *bvl@ = second argument vector base and limit
912 *
913 * Returns: ---
914 *
915 * Use: Performs unsigned integer subtraction. If the result
916 * overflows the destination vector, high-order bits are
917 * discarded. This means that two's complement subtraction
918 * happens more or less for free, althuogh that's more a side-
919 * effect than anything else. The result vector may be equal to
920 * either or both source vectors, but may not otherwise overlap
921 * them.
922 */
923
924 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
925 const mpw *bv, const mpw *bvl)
926 {
927 mpw c = 0;
928
929 while (av < avl || bv < bvl) {
930 mpw a, b;
931 mpd x;
932 if (dv >= dvl)
933 return;
934 a = (av < avl) ? *av++ : 0;
935 b = (bv < bvl) ? *bv++ : 0;
936 x = (mpd)a - (mpd)b - c;
937 *dv++ = MPW(x);
938 if (x >> MPW_BITS)
939 c = 1;
940 else
941 c = 0;
942 }
943 if (c)
944 c = MPW_MAX;
945 while (dv < dvl)
946 *dv++ = c;
947 }
948
949 /* --- @mpx_usubn@ --- *
950 *
951 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
952 * @n@ = subtrahend
953 *
954 * Returns: ---
955 *
956 * Use: Subtracts a small integer from a multiprecision number.
957 */
958
959 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
960
961 /* --- @mpx_uaddnlsl@ --- *
962 *
963 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
964 * @mpw a@ = second argument
965 * @unsigned o@ = offset in bits
966 *
967 * Returns: ---
968 *
969 * Use: Computes %$d + 2^o a$%. If the result overflows then
970 * high-order bits are discarded, as usual. We must have
971 * @0 < o < MPW_BITS@.
972 */
973
974 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
975 {
976 mpw b = a >> (MPW_BITS - o);
977 a <<= o;
978
979 if (dv < dvl) {
980 mpd x = (mpd)*dv - (mpd)a;
981 *dv++ = MPW(x);
982 if (x >> MPW_BITS)
983 b++;
984 MPX_USUBN(dv, dvl, b);
985 }
986 }
987
988 /* --- @mpx_umul@ --- *
989 *
990 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
991 * @const mpw *av, *avl@ = multiplicand vector base and limit
992 * @const mpw *bv, *bvl@ = multiplier vector base and limit
993 *
994 * Returns: ---
995 *
996 * Use: Performs unsigned integer multiplication. If the result
997 * overflows the desination vector, high-order bits are
998 * discarded. The result vector may not overlap the argument
999 * vectors in any way.
1000 */
1001
1002 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
1003 const mpw *bv, const mpw *bvl)
1004 {
1005 /* --- This is probably worthwhile on a multiply --- */
1006
1007 MPX_SHRINK(av, avl);
1008 MPX_SHRINK(bv, bvl);
1009
1010 /* --- Deal with a multiply by zero --- */
1011
1012 if (bv == bvl) {
1013 MPX_ZERO(dv, dvl);
1014 return;
1015 }
1016
1017 /* --- Do the initial multiply and initialize the accumulator --- */
1018
1019 MPX_UMULN(dv, dvl, av, avl, *bv++);
1020
1021 /* --- Do the remaining multiply/accumulates --- */
1022
1023 while (dv < dvl && bv < bvl) {
1024 mpw m = *bv++;
1025 mpw c = 0;
1026 const mpw *avv = av;
1027 mpw *dvv = ++dv;
1028
1029 while (avv < avl) {
1030 mpd x;
1031 if (dvv >= dvl)
1032 goto next;
1033 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
1034 *dvv++ = MPW(x);
1035 c = x >> MPW_BITS;
1036 }
1037 MPX_UADDN(dvv, dvl, c);
1038 next:;
1039 }
1040 }
1041
1042 /* --- @mpx_umuln@ --- *
1043 *
1044 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1045 * @const mpw *av, *avl@ = multiplicand vector base and limit
1046 * @mpw m@ = multiplier
1047 *
1048 * Returns: ---
1049 *
1050 * Use: Multiplies a multiprecision integer by a single-word value.
1051 * The destination and source may be equal. The destination
1052 * is completely cleared after use.
1053 */
1054
1055 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1056 {
1057 MPX_UMULN(dv, dvl, av, avl, m);
1058 }
1059
1060 /* --- @mpx_umlan@ --- *
1061 *
1062 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
1063 * @const mpw *av, *avl@ = multiplicand vector base and limit
1064 * @mpw m@ = multiplier
1065 *
1066 * Returns: ---
1067 *
1068 * Use: Multiplies a multiprecision integer by a single-word value
1069 * and adds the result to an accumulator.
1070 */
1071
1072 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1073 {
1074 MPX_UMLAN(dv, dvl, av, avl, m);
1075 }
1076
1077 /* --- @mpx_usqr@ --- *
1078 *
1079 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1080 * @const mpw *av, *av@ = source vector base and limit
1081 *
1082 * Returns: ---
1083 *
1084 * Use: Performs unsigned integer squaring. The result vector must
1085 * not overlap the source vector in any way.
1086 */
1087
1088 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
1089 {
1090 MPX_ZERO(dv, dvl);
1091
1092 /* --- Main loop --- */
1093
1094 while (av < avl) {
1095 const mpw *avv = av;
1096 mpw *dvv = dv;
1097 mpw a = *av;
1098 mpd c;
1099
1100 /* --- Stop if I've run out of destination --- */
1101
1102 if (dvv >= dvl)
1103 break;
1104
1105 /* --- Work out the square at this point in the proceedings --- */
1106
1107 {
1108 mpd x = (mpd)a * (mpd)a + *dvv;
1109 *dvv++ = MPW(x);
1110 c = MPW(x >> MPW_BITS);
1111 }
1112
1113 /* --- Now fix up the rest of the vector upwards --- */
1114
1115 avv++;
1116 while (dvv < dvl && avv < avl) {
1117 mpd x = (mpd)a * (mpd)*avv++;
1118 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1119 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1120 *dvv++ = MPW(y);
1121 }
1122 while (dvv < dvl && c) {
1123 mpd x = c + *dvv;
1124 *dvv++ = MPW(x);
1125 c = x >> MPW_BITS;
1126 }
1127
1128 /* --- Get ready for the next round --- */
1129
1130 av++;
1131 dv += 2;
1132 }
1133 }
1134
1135 /* --- @mpx_udiv@ --- *
1136 *
1137 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1138 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1139 * @const mpw *dv, *dvl@ = divisor vector base and limit
1140 * @mpw *sv, *svl@ = scratch workspace
1141 *
1142 * Returns: ---
1143 *
1144 * Use: Performs unsigned integer division. If the result overflows
1145 * the quotient vector, high-order bits are discarded. (Clearly
1146 * the remainder vector can't overflow.) The various vectors
1147 * may not overlap in any way. Yes, I know it's a bit odd
1148 * requiring the dividend to be in the result position but it
1149 * does make some sense really. The remainder must have
1150 * headroom for at least two extra words. The scratch space
1151 * must be at least one word larger than the divisor.
1152 */
1153
1154 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1155 const mpw *dv, const mpw *dvl,
1156 mpw *sv, mpw *svl)
1157 {
1158 unsigned norm = 0;
1159 size_t scale;
1160 mpw d, dd;
1161
1162 /* --- Initialize the quotient --- */
1163
1164 MPX_ZERO(qv, qvl);
1165
1166 /* --- Perform some sanity checks --- */
1167
1168 MPX_SHRINK(dv, dvl);
1169 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1170
1171 /* --- Normalize the divisor --- *
1172 *
1173 * The algorithm requires that the divisor be at least two digits long.
1174 * This is easy to fix.
1175 */
1176
1177 {
1178 unsigned b;
1179
1180 d = dvl[-1];
1181 for (b = MPW_BITS / 2; b; b >>= 1) {
1182 if (d < (MPW_MAX >> b)) {
1183 d <<= b;
1184 norm += b;
1185 }
1186 }
1187 if (dv + 1 == dvl)
1188 norm += MPW_BITS;
1189 }
1190
1191 /* --- Normalize the dividend/remainder to match --- */
1192
1193 if (norm) {
1194 mpx_lsl(rv, rvl, rv, rvl, norm);
1195 mpx_lsl(sv, svl, dv, dvl, norm);
1196 dv = sv;
1197 dvl = svl;
1198 MPX_SHRINK(dv, dvl);
1199 }
1200
1201 MPX_SHRINK(rv, rvl);
1202 d = dvl[-1];
1203 dd = dvl[-2];
1204
1205 /* --- Work out the relative scales --- */
1206
1207 {
1208 size_t rvn = rvl - rv;
1209 size_t dvn = dvl - dv;
1210
1211 /* --- If the divisor is clearly larger, notice this --- */
1212
1213 if (dvn > rvn) {
1214 mpx_lsr(rv, rvl, rv, rvl, norm);
1215 return;
1216 }
1217
1218 scale = rvn - dvn;
1219 }
1220
1221 /* --- Calculate the most significant quotient digit --- *
1222 *
1223 * Because the divisor has its top bit set, this can only happen once. The
1224 * pointer arithmetic is a little contorted, to make sure that the
1225 * behaviour is defined.
1226 */
1227
1228 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1229 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1230 if (qvl - qv > scale)
1231 qv[scale] = 1;
1232 }
1233
1234 /* --- Now for the main loop --- */
1235
1236 {
1237 mpw *rvv = rvl - 2;
1238
1239 while (scale) {
1240 mpw q;
1241 mpd rh;
1242
1243 /* --- Get an estimate for the next quotient digit --- */
1244
1245 mpw r = rvv[1];
1246 mpw rr = rvv[0];
1247 mpw rrr = *--rvv;
1248
1249 scale--;
1250 rh = ((mpd)r << MPW_BITS) | rr;
1251 if (r == d)
1252 q = MPW_MAX;
1253 else
1254 q = MPW(rh / d);
1255
1256 /* --- Refine the estimate --- */
1257
1258 {
1259 mpd yh = (mpd)d * q;
1260 mpd yy = (mpd)dd * q;
1261 mpw yl;
1262
1263 if (yy > MPW_MAX)
1264 yh += yy >> MPW_BITS;
1265 yl = MPW(yy);
1266
1267 while (yh > rh || (yh == rh && yl > rrr)) {
1268 q--;
1269 yh -= d;
1270 if (yl < dd)
1271 yh--;
1272 yl = MPW(yl - dd);
1273 }
1274 }
1275
1276 /* --- Remove a chunk from the dividend --- */
1277
1278 {
1279 mpw *svv;
1280 const mpw *dvv;
1281 mpw mc = 0, sc = 0;
1282
1283 /* --- Calculate the size of the chunk --- *
1284 *
1285 * This does the whole job of calculating @r >> scale - qd@.
1286 */
1287
1288 for (svv = rv + scale, dvv = dv;
1289 dvv < dvl && svv < rvl;
1290 svv++, dvv++) {
1291 mpd x = (mpd)*dvv * (mpd)q + mc;
1292 mc = x >> MPW_BITS;
1293 x = (mpd)*svv - MPW(x) - sc;
1294 *svv = MPW(x);
1295 if (x >> MPW_BITS)
1296 sc = 1;
1297 else
1298 sc = 0;
1299 }
1300
1301 if (svv < rvl) {
1302 mpd x = (mpd)*svv - mc - sc;
1303 *svv++ = MPW(x);
1304 if (x >> MPW_BITS)
1305 sc = MPW_MAX;
1306 else
1307 sc = 0;
1308 while (svv < rvl)
1309 *svv++ = sc;
1310 }
1311
1312 /* --- Fix if the quotient was too large --- *
1313 *
1314 * This doesn't seem to happen very often.
1315 */
1316
1317 if (rvl[-1] > MPW_MAX / 2) {
1318 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1319 q--;
1320 }
1321 }
1322
1323 /* --- Done for another iteration --- */
1324
1325 if (qvl - qv > scale)
1326 qv[scale] = q;
1327 r = rr;
1328 rr = rrr;
1329 }
1330 }
1331
1332 /* --- Now fiddle with unnormalizing and things --- */
1333
1334 mpx_lsr(rv, rvl, rv, rvl, norm);
1335 }
1336
1337 /* --- @mpx_udivn@ --- *
1338 *
1339 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1340 * dividend)
1341 * @const mpw *rv, *rvl@ = dividend
1342 * @mpw d@ = single-precision divisor
1343 *
1344 * Returns: Remainder after divison.
1345 *
1346 * Use: Performs a single-precision division operation.
1347 */
1348
1349 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1350 {
1351 size_t i;
1352 size_t ql = qvl - qv;
1353 mpd r = 0;
1354
1355 i = rvl - rv;
1356 while (i > 0) {
1357 i--;
1358 r = (r << MPW_BITS) | rv[i];
1359 if (i < ql)
1360 qv[i] = r / d;
1361 r %= d;
1362 }
1363 return (MPW(r));
1364 }
1365
1366 /*----- Test rig ----------------------------------------------------------*/
1367
1368 #ifdef TEST_RIG
1369
1370 #include <mLib/alloc.h>
1371 #include <mLib/dstr.h>
1372 #include <mLib/quis.h>
1373 #include <mLib/testrig.h>
1374
1375 #include "mpscan.h"
1376
1377 #define ALLOC(v, vl, sz) do { \
1378 size_t _sz = (sz); \
1379 mpw *_vv = xmalloc(MPWS(_sz)); \
1380 mpw *_vvl = _vv + _sz; \
1381 (v) = _vv; \
1382 (vl) = _vvl; \
1383 } while (0)
1384
1385 #define LOAD(v, vl, d) do { \
1386 const dstr *_d = (d); \
1387 mpw *_v, *_vl; \
1388 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1389 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1390 (v) = _v; \
1391 (vl) = _vl; \
1392 } while (0)
1393
1394 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1395
1396 static void dumpbits(const char *msg, const void *pp, size_t sz)
1397 {
1398 const octet *p = pp;
1399 fputs(msg, stderr);
1400 for (; sz; sz--)
1401 fprintf(stderr, " %02x", *p++);
1402 fputc('\n', stderr);
1403 }
1404
1405 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1406 {
1407 fputs(msg, stderr);
1408 MPX_SHRINK(v, vl);
1409 while (v < vl)
1410 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1411 fputc('\n', stderr);
1412 }
1413
1414 static int chkscan(const mpw *v, const mpw *vl,
1415 const void *pp, size_t sz, int step)
1416 {
1417 mpscan mps;
1418 const octet *p = pp;
1419 unsigned bit = 0;
1420 int ok = 1;
1421
1422 mpscan_initx(&mps, v, vl);
1423 while (sz) {
1424 unsigned x = *p;
1425 int i;
1426 p += step;
1427 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1428 if (MPSCAN_BIT(&mps) != (x & 1)) {
1429 fprintf(stderr,
1430 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1431 step, bit, x & 1, MPSCAN_BIT(&mps));
1432 ok = 0;
1433 }
1434 x >>= 1;
1435 bit++;
1436 }
1437 sz--;
1438 }
1439
1440 return (ok);
1441 }
1442
1443 static int loadstore(dstr *v)
1444 {
1445 dstr d = DSTR_INIT;
1446 size_t sz = MPW_RQ(v->len) * 2, diff;
1447 mpw *m, *ml;
1448 int ok = 1;
1449
1450 dstr_ensure(&d, v->len);
1451 m = xmalloc(MPWS(sz));
1452
1453 for (diff = 0; diff < sz; diff += 5) {
1454 size_t oct;
1455
1456 ml = m + sz - diff;
1457
1458 mpx_loadl(m, ml, v->buf, v->len);
1459 if (!chkscan(m, ml, v->buf, v->len, +1))
1460 ok = 0;
1461 MPX_OCTETS(oct, m, ml);
1462 mpx_storel(m, ml, d.buf, d.sz);
1463 if (memcmp(d.buf, v->buf, oct) != 0) {
1464 dumpbits("\n*** storel failed", d.buf, d.sz);
1465 ok = 0;
1466 }
1467
1468 mpx_loadb(m, ml, v->buf, v->len);
1469 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1470 ok = 0;
1471 MPX_OCTETS(oct, m, ml);
1472 mpx_storeb(m, ml, d.buf, d.sz);
1473 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1474 dumpbits("\n*** storeb failed", d.buf, d.sz);
1475 ok = 0;
1476 }
1477 }
1478
1479 if (!ok)
1480 dumpbits("input data", v->buf, v->len);
1481
1482 free(m);
1483 dstr_destroy(&d);
1484 return (ok);
1485 }
1486
1487 static int twocl(dstr *v)
1488 {
1489 dstr d = DSTR_INIT;
1490 mpw *m, *ml;
1491 size_t sz;
1492 int ok = 1;
1493
1494 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1495 dstr_ensure(&d, sz);
1496
1497 sz = MPW_RQ(sz);
1498 m = xmalloc(MPWS(sz));
1499 ml = m + sz;
1500
1501 mpx_loadl(m, ml, v[0].buf, v[0].len);
1502 mpx_storel2cn(m, ml, d.buf, v[1].len);
1503 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1504 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1505 ok = 0;
1506 }
1507
1508 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1509 mpx_storel(m, ml, d.buf, v[0].len);
1510 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1511 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1512 ok = 0;
1513 }
1514
1515 if (!ok) {
1516 dumpbits("pos", v[0].buf, v[0].len);
1517 dumpbits("neg", v[1].buf, v[1].len);
1518 }
1519
1520 free(m);
1521 dstr_destroy(&d);
1522
1523 return (ok);
1524 }
1525
1526 static int twocb(dstr *v)
1527 {
1528 dstr d = DSTR_INIT;
1529 mpw *m, *ml;
1530 size_t sz;
1531 int ok = 1;
1532
1533 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1534 dstr_ensure(&d, sz);
1535
1536 sz = MPW_RQ(sz);
1537 m = xmalloc(MPWS(sz));
1538 ml = m + sz;
1539
1540 mpx_loadb(m, ml, v[0].buf, v[0].len);
1541 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1542 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1543 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1544 ok = 0;
1545 }
1546
1547 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1548 mpx_storeb(m, ml, d.buf, v[0].len);
1549 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1550 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1551 ok = 0;
1552 }
1553
1554 if (!ok) {
1555 dumpbits("pos", v[0].buf, v[0].len);
1556 dumpbits("neg", v[1].buf, v[1].len);
1557 }
1558
1559 free(m);
1560 dstr_destroy(&d);
1561
1562 return (ok);
1563 }
1564
1565 static int lsl(dstr *v)
1566 {
1567 mpw *a, *al;
1568 int n = *(int *)v[1].buf;
1569 mpw *c, *cl;
1570 mpw *d, *dl;
1571 int ok = 1;
1572
1573 LOAD(a, al, &v[0]);
1574 LOAD(c, cl, &v[2]);
1575 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1576
1577 mpx_lsl(d, dl, a, al, n);
1578 if (!mpx_ueq(d, dl, c, cl)) {
1579 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1580 dumpmp(" a", a, al);
1581 dumpmp("expected", c, cl);
1582 dumpmp(" result", d, dl);
1583 ok = 0;
1584 }
1585
1586 free(a); free(c); free(d);
1587 return (ok);
1588 }
1589
1590 static int lslc(dstr *v)
1591 {
1592 mpw *a, *al;
1593 int n = *(int *)v[1].buf;
1594 mpw *c, *cl;
1595 mpw *d, *dl;
1596 int ok = 1;
1597
1598 LOAD(a, al, &v[0]);
1599 LOAD(c, cl, &v[2]);
1600 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1601
1602 mpx_lslc(d, dl, a, al, n);
1603 if (!mpx_ueq(d, dl, c, cl)) {
1604 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1605 dumpmp(" a", a, al);
1606 dumpmp("expected", c, cl);
1607 dumpmp(" result", d, dl);
1608 ok = 0;
1609 }
1610
1611 free(a); free(c); free(d);
1612 return (ok);
1613 }
1614
1615 static int lsr(dstr *v)
1616 {
1617 mpw *a, *al;
1618 int n = *(int *)v[1].buf;
1619 mpw *c, *cl;
1620 mpw *d, *dl;
1621 int ok = 1;
1622
1623 LOAD(a, al, &v[0]);
1624 LOAD(c, cl, &v[2]);
1625 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1626
1627 mpx_lsr(d, dl, a, al, n);
1628 if (!mpx_ueq(d, dl, c, cl)) {
1629 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1630 dumpmp(" a", a, al);
1631 dumpmp("expected", c, cl);
1632 dumpmp(" result", d, dl);
1633 ok = 0;
1634 }
1635
1636 free(a); free(c); free(d);
1637 return (ok);
1638 }
1639
1640 static int uadd(dstr *v)
1641 {
1642 mpw *a, *al;
1643 mpw *b, *bl;
1644 mpw *c, *cl;
1645 mpw *d, *dl;
1646 int ok = 1;
1647
1648 LOAD(a, al, &v[0]);
1649 LOAD(b, bl, &v[1]);
1650 LOAD(c, cl, &v[2]);
1651 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1652
1653 mpx_uadd(d, dl, a, al, b, bl);
1654 if (!mpx_ueq(d, dl, c, cl)) {
1655 fprintf(stderr, "\n*** uadd failed\n");
1656 dumpmp(" a", a, al);
1657 dumpmp(" b", b, bl);
1658 dumpmp("expected", c, cl);
1659 dumpmp(" result", d, dl);
1660 ok = 0;
1661 }
1662
1663 free(a); free(b); free(c); free(d);
1664 return (ok);
1665 }
1666
1667 static int usub(dstr *v)
1668 {
1669 mpw *a, *al;
1670 mpw *b, *bl;
1671 mpw *c, *cl;
1672 mpw *d, *dl;
1673 int ok = 1;
1674
1675 LOAD(a, al, &v[0]);
1676 LOAD(b, bl, &v[1]);
1677 LOAD(c, cl, &v[2]);
1678 ALLOC(d, dl, al - a);
1679
1680 mpx_usub(d, dl, a, al, b, bl);
1681 if (!mpx_ueq(d, dl, c, cl)) {
1682 fprintf(stderr, "\n*** usub failed\n");
1683 dumpmp(" a", a, al);
1684 dumpmp(" b", b, bl);
1685 dumpmp("expected", c, cl);
1686 dumpmp(" result", d, dl);
1687 ok = 0;
1688 }
1689
1690 free(a); free(b); free(c); free(d);
1691 return (ok);
1692 }
1693
1694 static int umul(dstr *v)
1695 {
1696 mpw *a, *al;
1697 mpw *b, *bl;
1698 mpw *c, *cl;
1699 mpw *d, *dl;
1700 int ok = 1;
1701
1702 LOAD(a, al, &v[0]);
1703 LOAD(b, bl, &v[1]);
1704 LOAD(c, cl, &v[2]);
1705 ALLOC(d, dl, (al - a) + (bl - b));
1706
1707 mpx_umul(d, dl, a, al, b, bl);
1708 if (!mpx_ueq(d, dl, c, cl)) {
1709 fprintf(stderr, "\n*** umul failed\n");
1710 dumpmp(" a", a, al);
1711 dumpmp(" b", b, bl);
1712 dumpmp("expected", c, cl);
1713 dumpmp(" result", d, dl);
1714 ok = 0;
1715 }
1716
1717 free(a); free(b); free(c); free(d);
1718 return (ok);
1719 }
1720
1721 static int usqr(dstr *v)
1722 {
1723 mpw *a, *al;
1724 mpw *c, *cl;
1725 mpw *d, *dl;
1726 int ok = 1;
1727
1728 LOAD(a, al, &v[0]);
1729 LOAD(c, cl, &v[1]);
1730 ALLOC(d, dl, 2 * (al - a));
1731
1732 mpx_usqr(d, dl, a, al);
1733 if (!mpx_ueq(d, dl, c, cl)) {
1734 fprintf(stderr, "\n*** usqr failed\n");
1735 dumpmp(" a", a, al);
1736 dumpmp("expected", c, cl);
1737 dumpmp(" result", d, dl);
1738 ok = 0;
1739 }
1740
1741 free(a); free(c); free(d);
1742 return (ok);
1743 }
1744
1745 static int udiv(dstr *v)
1746 {
1747 mpw *a, *al;
1748 mpw *b, *bl;
1749 mpw *q, *ql;
1750 mpw *r, *rl;
1751 mpw *qq, *qql;
1752 mpw *s, *sl;
1753 int ok = 1;
1754
1755 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1756 LOAD(b, bl, &v[1]);
1757 LOAD(q, ql, &v[2]);
1758 LOAD(r, rl, &v[3]);
1759 ALLOC(qq, qql, al - a);
1760 ALLOC(s, sl, (bl - b) + 1);
1761
1762 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1763 if (!mpx_ueq(qq, qql, q, ql) ||
1764 !mpx_ueq(a, al, r, rl)) {
1765 fprintf(stderr, "\n*** udiv failed\n");
1766 dumpmp(" divisor", b, bl);
1767 dumpmp("expect r", r, rl);
1768 dumpmp("result r", a, al);
1769 dumpmp("expect q", q, ql);
1770 dumpmp("result q", qq, qql);
1771 ok = 0;
1772 }
1773
1774 free(a); free(b); free(r); free(q); free(s); free(qq);
1775 return (ok);
1776 }
1777
1778 static test_chunk defs[] = {
1779 { "load-store", loadstore, { &type_hex, 0 } },
1780 { "2cl", twocl, { &type_hex, &type_hex, } },
1781 { "2cb", twocb, { &type_hex, &type_hex, } },
1782 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1783 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1784 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1785 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1786 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1787 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1788 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1789 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1790 { 0, 0, { 0 } }
1791 };
1792
1793 int main(int argc, char *argv[])
1794 {
1795 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1796 return (0);
1797 }
1798
1799 #endif
1800
1801 /*----- That's all, folks -------------------------------------------------*/