Major memory management overhaul. Added arena support. Use the secure
[u/mdw/catacomb] / pfilt.c
1 /* -*-c-*-
2 *
3 * $Id: pfilt.c,v 1.1 1999/12/22 15:49:39 mdw Exp $
4 *
5 * Finding and testing prime numbers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: pfilt.c,v $
33 * Revision 1.1 1999/12/22 15:49:39 mdw
34 * Renamed from `pgen'. Reworking for new prime-search system.
35 *
36 * Revision 1.3 1999/12/10 23:28:35 mdw
37 * Track suggested destination changes.
38 *
39 * Revision 1.2 1999/11/20 22:23:05 mdw
40 * Add multiply-and-add function for Diffie-Hellman safe prime generation.
41 *
42 * Revision 1.1 1999/11/19 13:17:57 mdw
43 * Prime number generator and tester.
44 *
45 */
46
47 /*----- Header files ------------------------------------------------------*/
48
49 #include "mp.h"
50 #include "mpmont.h"
51 #include "pfilt.h"
52 #include "pgen.h"
53 #include "primetab.h"
54
55 /*----- Main code ---------------------------------------------------------*/
56
57 /* --- @pfilt_create@ --- *
58 *
59 * Arguments: @pfilt *p@ = pointer to prime filtering context
60 * @mp *m@ = pointer to initial number to test
61 *
62 * Returns: One of the @PGEN@ result codes.
63 *
64 * Use: Tests an initial number for primality by computing its
65 * residue modulo various small prime numbers. This is fairly
66 * quick, but not particularly certain. If a @PGEN_TRY@
67 * result is returned, perform Rabin-Miller tests to confirm.
68 */
69
70 int pfilt_create(pfilt *p, mp *m)
71 {
72 int rc = PGEN_TRY;
73 int i;
74 mp *r = MP_NEW;
75 mpw qw;
76 mp q;
77
78 /* --- Take a copy of the number --- */
79
80 mp_shrink(m);
81 p->m = MP_COPY(m);
82
83 /* --- Fill in the residues --- */
84
85 mp_build(&q, &qw, &qw + 1);
86 for (i = 0; i < NPRIME; i++) {
87 qw = primetab[i];
88 mp_div(0, &r, m, &q);
89 p->r[i] = r->v[0];
90 if (!p->r[i] && rc == PGEN_TRY) {
91 if (MP_LEN(m) == 1 && m->v[0] == primetab[i])
92 rc = PGEN_DONE;
93 else
94 rc = PGEN_FAIL;
95 }
96 }
97
98 /* --- Done --- */
99
100 mp_drop(r);
101 return (rc);
102 }
103
104 /* --- @pfilt_destroy@ --- *
105 *
106 * Arguments: @pfilt *p@ = pointer to prime filtering context
107 *
108 * Returns: ---
109 *
110 * Use: Discards a context and all the resources it holds.
111 */
112
113 void pfilt_destroy(pfilt *p)
114 {
115 mp_drop(p->m);
116 }
117
118 /* --- @pfilt_step@ --- *
119 *
120 * Arguments: @pfilt *p@ = pointer to prime filtering context
121 * @mpw step@ = how much to step the number
122 *
123 * Returns: One of the @PGEN@ result codes.
124 *
125 * Use: Steps a number by a small amount. Stepping is much faster
126 * than initializing with a new number. The test performed is
127 * the same simple one used by @primetab_create@, so @PGEN_TRY@
128 * results should be followed up by a Rabin-Miller test.
129 */
130
131 int pfilt_step(pfilt *p, mpw step)
132 {
133 int rc = PGEN_TRY;
134 int i;
135
136 /* --- Add the step on to the number --- */
137
138 p->m = mp_split(p->m);
139 mp_ensure(p->m, MP_LEN(p->m) + 1);
140 mpx_uaddn(p->m->v, p->m->vl, step);
141 mp_shrink(p->m);
142
143 /* --- Update the residue table --- */
144
145 for (i = 0; i < NPRIME; i++) {
146 p->r[i] = (p->r[i] + step) % primetab[i];
147 if (!p->r[i] && rc == PGEN_TRY) {
148 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
149 rc = PGEN_DONE;
150 else
151 rc = PGEN_FAIL;
152 }
153 }
154
155 /* --- Small numbers must be prime --- */
156
157 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
158 p->m->v[0] < MAXPRIME * MAXPRIME)
159 rc = PGEN_DONE;
160
161 /* --- Done --- */
162
163 return (rc);
164 }
165
166 /* --- @pfilt_muladd@ --- *
167 *
168 * Arguments: @pfilt *p@ = destination prime filtering context
169 * @const pfilt *q@ = source prime filtering context
170 * @mpw m@ = number to multiply by
171 * @mpw a@ = number to add
172 *
173 * Returns: One of the @PGEN@ result codes.
174 *
175 * Use: Multiplies the number in a prime filtering context by a
176 * small value and then adds a small value. The destination
177 * should either be uninitialized or the same as the source.
178 *
179 * Common things to do include multiplying by 2 and adding 0 to
180 * turn a prime into a jump for finding other primes with @q@ as
181 * a factor of @p - 1@, or multiplying by 2 and adding 1.
182 */
183
184 int pfilt_muladd(pfilt *p, const pfilt *q, mpw m, mpw a)
185 {
186 int rc = PGEN_TRY;
187 int i;
188
189 /* --- Multiply the big number --- */
190
191 {
192 mp *d = mp_create(MP_LEN(q->m) + 2);
193 mpx_umuln(d->v, d->vl, q->m->v, q->m->vl, m);
194 mpx_uaddn(d->v, d->vl, a);
195 d->f = q->m->f;
196 if (p == q)
197 mp_drop(p->m);
198 mp_shrink(d);
199 p->m = d;
200 }
201
202 /* --- Gallivant through the residue table --- */
203
204 for (i = 0; i < NPRIME; i++) {
205 p->r[i] = (q->r[i] * m + a) % primetab[i];
206 if (!p->r[i] && rc == PGEN_TRY) {
207 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
208 rc = PGEN_DONE;
209 else
210 rc = PGEN_FAIL;
211 }
212 }
213
214 /* --- Small numbers must be prime --- */
215
216 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
217 p->m->v[0] < MAXPRIME * MAXPRIME)
218 rc = PGEN_DONE;
219
220 /* --- Finished --- */
221
222 return (rc);
223 }
224
225 /* --- @pfilt_jump@ --- *
226 *
227 * Arguments: @pfilt *p@ = pointer to prime filtering context
228 * @const pfilt *j@ = pointer to another filtering context
229 *
230 * Returns: One of the @PGEN@ result codes.
231 *
232 * Use: Steps a number by a large amount. Even so, jumping is much
233 * faster than initializing a new number. The test peformed is
234 * the same simple one used by @primetab_create@, so @PGEN_TRY@
235 * results should be followed up by a Rabin-Miller test.
236 *
237 * Note that the number stored in the @j@ context is probably
238 * better off being even than prime. The important thing is
239 * that all of the residues for the number have already been
240 * computed.
241 */
242
243 int pfilt_jump(pfilt *p, const pfilt *j)
244 {
245 int rc = PGEN_TRY;
246 int i;
247
248 /* --- Add the step on --- */
249
250 p->m = mp_add(p->m, p->m, j->m);
251
252 /* --- Update the residue table --- */
253
254 for (i = 0; i < NPRIME; i++) {
255 p->r[i] = p->r[i] + j->r[i];
256 if (p->r[i] > primetab[i])
257 p->r[i] -= primetab[i];
258 if (!p->r[i] && rc == PGEN_TRY) {
259 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
260 rc = PGEN_DONE;
261 else
262 rc = PGEN_FAIL;
263 }
264 }
265
266 /* --- Small numbers must be prime --- */
267
268 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
269 p->m->v[0] < MAXPRIME * MAXPRIME)
270 rc = PGEN_DONE;
271
272 /* --- Done --- */
273
274 return (rc);
275 }
276
277 /*----- That's all, folks -------------------------------------------------*/