(mpx_udiv): Fix bug in quotient digit estimation.
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.8 2000/06/25 12:59:02 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.8 2000/06/25 12:59:02 mdw
34 * (mpx_udiv): Fix bug in quotient digit estimation.
35 *
36 * Revision 1.7 1999/12/22 15:49:07 mdw
37 * New function for division by a small integer.
38 *
39 * Revision 1.6 1999/11/20 22:43:44 mdw
40 * Integrate testing for MPX routines.
41 *
42 * Revision 1.5 1999/11/20 22:23:27 mdw
43 * Add function versions of some low-level macros with wider use.
44 *
45 * Revision 1.4 1999/11/17 18:04:09 mdw
46 * Add two's-complement functionality. Improve mpx_udiv a little by
47 * performing the multiplication of the divisor by q with the subtraction
48 * from r.
49 *
50 * Revision 1.3 1999/11/13 01:57:31 mdw
51 * Remove stray debugging code.
52 *
53 * Revision 1.2 1999/11/13 01:50:59 mdw
54 * Multiprecision routines finished and tested.
55 *
56 * Revision 1.1 1999/09/03 08:41:12 mdw
57 * Initial import.
58 *
59 */
60
61 /*----- Header files ------------------------------------------------------*/
62
63 #include <assert.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67
68 #include <mLib/bits.h>
69
70 #include "mptypes.h"
71 #include "mpx.h"
72
73 /*----- Loading and storing -----------------------------------------------*/
74
75 /* --- @mpx_storel@ --- *
76 *
77 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
78 * @void *pp@ = pointer to octet array
79 * @size_t sz@ = size of octet array
80 *
81 * Returns: ---
82 *
83 * Use: Stores an MP in an octet array, least significant octet
84 * first. High-end octets are silently discarded if there
85 * isn't enough space for them.
86 */
87
88 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
89 {
90 mpw n, w = 0;
91 octet *p = pp, *q = p + sz;
92 unsigned bits = 0;
93
94 while (p < q) {
95 if (bits < 8) {
96 if (v >= vl) {
97 *p++ = U8(w);
98 break;
99 }
100 n = *v++;
101 *p++ = U8(w | n << bits);
102 w = n >> (8 - bits);
103 bits += MPW_BITS - 8;
104 } else {
105 *p++ = U8(w);
106 w >>= 8;
107 bits -= 8;
108 }
109 }
110 memset(p, 0, q - p);
111 }
112
113 /* --- @mpx_loadl@ --- *
114 *
115 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
116 * @const void *pp@ = pointer to octet array
117 * @size_t sz@ = size of octet array
118 *
119 * Returns: ---
120 *
121 * Use: Loads an MP in an octet array, least significant octet
122 * first. High-end octets are ignored if there isn't enough
123 * space for them.
124 */
125
126 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
127 {
128 unsigned n;
129 mpw w = 0;
130 const octet *p = pp, *q = p + sz;
131 unsigned bits = 0;
132
133 if (v >= vl)
134 return;
135 while (p < q) {
136 n = U8(*p++);
137 w |= n << bits;
138 bits += 8;
139 if (bits >= MPW_BITS) {
140 *v++ = MPW(w);
141 w = n >> (MPW_BITS - bits + 8);
142 bits -= MPW_BITS;
143 if (v >= vl)
144 return;
145 }
146 }
147 *v++ = w;
148 MPX_ZERO(v, vl);
149 }
150
151 /* --- @mpx_storeb@ --- *
152 *
153 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
154 * @void *pp@ = pointer to octet array
155 * @size_t sz@ = size of octet array
156 *
157 * Returns: ---
158 *
159 * Use: Stores an MP in an octet array, most significant octet
160 * first. High-end octets are silently discarded if there
161 * isn't enough space for them.
162 */
163
164 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
165 {
166 mpw n, w = 0;
167 octet *p = pp, *q = p + sz;
168 unsigned bits = 0;
169
170 while (q > p) {
171 if (bits < 8) {
172 if (v >= vl) {
173 *--q = U8(w);
174 break;
175 }
176 n = *v++;
177 *--q = U8(w | n << bits);
178 w = n >> (8 - bits);
179 bits += MPW_BITS - 8;
180 } else {
181 *--q = U8(w);
182 w >>= 8;
183 bits -= 8;
184 }
185 }
186 memset(p, 0, q - p);
187 }
188
189 /* --- @mpx_loadb@ --- *
190 *
191 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
192 * @const void *pp@ = pointer to octet array
193 * @size_t sz@ = size of octet array
194 *
195 * Returns: ---
196 *
197 * Use: Loads an MP in an octet array, most significant octet
198 * first. High-end octets are ignored if there isn't enough
199 * space for them.
200 */
201
202 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
203 {
204 unsigned n;
205 mpw w = 0;
206 const octet *p = pp, *q = p + sz;
207 unsigned bits = 0;
208
209 if (v >= vl)
210 return;
211 while (q > p) {
212 n = U8(*--q);
213 w |= n << bits;
214 bits += 8;
215 if (bits >= MPW_BITS) {
216 *v++ = MPW(w);
217 w = n >> (MPW_BITS - bits + 8);
218 bits -= MPW_BITS;
219 if (v >= vl)
220 return;
221 }
222 }
223 *v++ = w;
224 MPX_ZERO(v, vl);
225 }
226
227 /*----- Logical shifting --------------------------------------------------*/
228
229 /* --- @mpx_lsl@ --- *
230 *
231 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
232 * @const mpw *av, *avl@ = source vector base and limit
233 * @size_t n@ = number of bit positions to shift by
234 *
235 * Returns: ---
236 *
237 * Use: Performs a logical shift left operation on an integer.
238 */
239
240 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
241 {
242 size_t nw;
243 unsigned nb;
244
245 /* --- Trivial special case --- */
246
247 if (n == 0)
248 MPX_COPY(dv, dvl, av, avl);
249
250 /* --- Single bit shifting --- */
251
252 else if (n == 1) {
253 mpw w = 0;
254 while (av < avl) {
255 mpw t;
256 if (dv >= dvl)
257 goto done;
258 t = *av++;
259 *dv++ = MPW((t << 1) | w);
260 w = t >> (MPW_BITS - 1);
261 }
262 if (dv >= dvl)
263 goto done;
264 *dv++ = MPW(w);
265 MPX_ZERO(dv, dvl);
266 goto done;
267 }
268
269 /* --- Break out word and bit shifts for more sophisticated work --- */
270
271 nw = n / MPW_BITS;
272 nb = n % MPW_BITS;
273
274 /* --- Handle a shift by a multiple of the word size --- */
275
276 if (nb == 0) {
277 MPX_COPY(dv + nw, dvl, av, avl);
278 memset(dv, 0, MPWS(nw));
279 }
280
281 /* --- And finally the difficult case --- *
282 *
283 * This is a little convoluted, because I have to start from the end and
284 * work backwards to avoid overwriting the source, if they're both the same
285 * block of memory.
286 */
287
288 else {
289 mpw w;
290 size_t nr = MPW_BITS - nb;
291 size_t dvn = dvl - dv;
292 size_t avn = avl - av;
293
294 if (dvn <= nw) {
295 MPX_ZERO(dv, dvl);
296 goto done;
297 }
298
299 if (dvn > avn + nw) {
300 size_t off = avn + nw + 1;
301 MPX_ZERO(dv + off, dvl);
302 dvl = dv + off;
303 w = 0;
304 } else {
305 avl = av + dvn - nw;
306 w = *--avl << nb;
307 }
308
309 while (avl > av) {
310 mpw t = *--avl;
311 *--dvl = (t >> nr) | w;
312 w = t << nb;
313 }
314
315 *--dvl = w;
316 MPX_ZERO(dv, dvl);
317 }
318
319 done:;
320 }
321
322 /* --- @mpx_lsr@ --- *
323 *
324 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
325 * @const mpw *av, *avl@ = source vector base and limit
326 * @size_t n@ = number of bit positions to shift by
327 *
328 * Returns: ---
329 *
330 * Use: Performs a logical shift right operation on an integer.
331 */
332
333 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
334 {
335 size_t nw;
336 unsigned nb;
337
338 /* --- Trivial special case --- */
339
340 if (n == 0)
341 MPX_COPY(dv, dvl, av, avl);
342
343 /* --- Single bit shifting --- */
344
345 else if (n == 1) {
346 mpw w = *av++ >> 1;
347 while (av < avl) {
348 mpw t;
349 if (dv >= dvl)
350 goto done;
351 t = *av++;
352 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
353 w = t >> 1;
354 }
355 if (dv >= dvl)
356 goto done;
357 *dv++ = MPW(w);
358 MPX_ZERO(dv, dvl);
359 goto done;
360 }
361
362 /* --- Break out word and bit shifts for more sophisticated work --- */
363
364 nw = n / MPW_BITS;
365 nb = n % MPW_BITS;
366
367 /* --- Handle a shift by a multiple of the word size --- */
368
369 if (nb == 0)
370 MPX_COPY(dv, dvl, av + nw, avl);
371
372 /* --- And finally the difficult case --- */
373
374 else {
375 mpw w;
376 size_t nr = MPW_BITS - nb;
377
378 av += nw;
379 w = *av++;
380 while (av < avl) {
381 mpw t;
382 if (dv >= dvl)
383 goto done;
384 t = *av++;
385 *dv++ = MPW((w >> nb) | (t << nr));
386 w = t;
387 }
388 if (dv < dvl) {
389 *dv++ = MPW(w >> nb);
390 MPX_ZERO(dv, dvl);
391 }
392 }
393
394 done:;
395 }
396
397 /*----- Unsigned arithmetic -----------------------------------------------*/
398
399 /* --- @mpx_2c@ --- *
400 *
401 * Arguments: @mpw *dv, *dvl@ = destination vector
402 * @const mpw *v, *vl@ = source vector
403 *
404 * Returns: ---
405 *
406 * Use: Calculates the two's complement of @v@.
407 */
408
409 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
410 {
411 mpw c = 0;
412 while (dv < dvl && v < vl)
413 *dv++ = c = MPW(~*v++);
414 if (dv < dvl) {
415 if (c > MPW_MAX / 2)
416 c = MPW(~0);
417 while (dv < dvl)
418 *dv++ = c;
419 }
420 MPX_UADDN(dv, dvl, 1);
421 }
422
423 /* --- @mpx_ucmp@ --- *
424 *
425 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
426 * @const mpw *bv, *bvl@ = second argument vector base and limit
427 *
428 * Returns: Less than, equal to, or greater than zero depending on
429 * whether @a@ is less than, equal to or greater than @b@,
430 * respectively.
431 *
432 * Use: Performs an unsigned integer comparison.
433 */
434
435 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
436 {
437 MPX_SHRINK(av, avl);
438 MPX_SHRINK(bv, bvl);
439
440 if (avl - av > bvl - bv)
441 return (+1);
442 else if (avl - av < bvl - bv)
443 return (-1);
444 else while (avl > av) {
445 mpw a = *--avl, b = *--bvl;
446 if (a > b)
447 return (+1);
448 else if (a < b)
449 return (-1);
450 }
451 return (0);
452 }
453
454 /* --- @mpx_uadd@ --- *
455 *
456 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
457 * @const mpw *av, *avl@ = first addend vector base and limit
458 * @const mpw *bv, *bvl@ = second addend vector base and limit
459 *
460 * Returns: ---
461 *
462 * Use: Performs unsigned integer addition. If the result overflows
463 * the destination vector, high-order bits are discarded. This
464 * means that two's complement addition happens more or less for
465 * free, although that's more a side-effect than anything else.
466 * The result vector may be equal to either or both source
467 * vectors, but may not otherwise overlap them.
468 */
469
470 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
471 const mpw *bv, const mpw *bvl)
472 {
473 mpw c = 0;
474
475 while (av < avl || bv < bvl) {
476 mpw a, b;
477 mpd x;
478 if (dv >= dvl)
479 return;
480 a = (av < avl) ? *av++ : 0;
481 b = (bv < bvl) ? *bv++ : 0;
482 x = (mpd)a + (mpd)b + c;
483 *dv++ = MPW(x);
484 c = x >> MPW_BITS;
485 }
486 if (dv < dvl) {
487 *dv++ = c;
488 MPX_ZERO(dv, dvl);
489 }
490 }
491
492 /* --- @mpx_uaddn@ --- *
493 *
494 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
495 * @mpw n@ = other addend
496 *
497 * Returns: ---
498 *
499 * Use: Adds a small integer to a multiprecision number.
500 */
501
502 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
503
504 /* --- @mpx_usub@ --- *
505 *
506 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
507 * @const mpw *av, *avl@ = first argument vector base and limit
508 * @const mpw *bv, *bvl@ = second argument vector base and limit
509 *
510 * Returns: ---
511 *
512 * Use: Performs unsigned integer subtraction. If the result
513 * overflows the destination vector, high-order bits are
514 * discarded. This means that two's complement subtraction
515 * happens more or less for free, althuogh that's more a side-
516 * effect than anything else. The result vector may be equal to
517 * either or both source vectors, but may not otherwise overlap
518 * them.
519 */
520
521 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
522 const mpw *bv, const mpw *bvl)
523 {
524 mpw c = 0;
525
526 while (av < avl || bv < bvl) {
527 mpw a, b;
528 mpd x;
529 if (dv >= dvl)
530 return;
531 a = (av < avl) ? *av++ : 0;
532 b = (bv < bvl) ? *bv++ : 0;
533 x = (mpd)a - (mpd)b - c;
534 *dv++ = MPW(x);
535 if (x >> MPW_BITS)
536 c = 1;
537 else
538 c = 0;
539 }
540 if (c)
541 c = MPW_MAX;
542 while (dv < dvl)
543 *dv++ = c;
544 }
545
546 /* --- @mpx_usubn@ --- *
547 *
548 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
549 * @n@ = subtrahend
550 *
551 * Returns: ---
552 *
553 * Use: Subtracts a small integer from a multiprecision number.
554 */
555
556 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
557
558 /* --- @mpx_umul@ --- *
559 *
560 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
561 * @const mpw *av, *avl@ = multiplicand vector base and limit
562 * @const mpw *bv, *bvl@ = multiplier vector base and limit
563 *
564 * Returns: ---
565 *
566 * Use: Performs unsigned integer multiplication. If the result
567 * overflows the desination vector, high-order bits are
568 * discarded. The result vector may not overlap the argument
569 * vectors in any way.
570 */
571
572 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
573 const mpw *bv, const mpw *bvl)
574 {
575 /* --- This is probably worthwhile on a multiply --- */
576
577 MPX_SHRINK(av, avl);
578 MPX_SHRINK(bv, bvl);
579
580 /* --- Deal with a multiply by zero --- */
581
582 if (bv == bvl) {
583 MPX_ZERO(dv, dvl);
584 return;
585 }
586
587 /* --- Do the initial multiply and initialize the accumulator --- */
588
589 MPX_UMULN(dv, dvl, av, avl, *bv++);
590
591 /* --- Do the remaining multiply/accumulates --- */
592
593 while (dv < dvl && bv < bvl) {
594 mpw m = *bv++;
595 mpw c = 0;
596 const mpw *avv = av;
597 mpw *dvv = ++dv;
598
599 while (avv < avl) {
600 mpd x;
601 if (dvv >= dvl)
602 goto next;
603 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
604 *dvv++ = MPW(x);
605 c = x >> MPW_BITS;
606 }
607 MPX_UADDN(dvv, dvl, c);
608 next:;
609 }
610 }
611
612 /* --- @mpx_umuln@ --- *
613 *
614 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
615 * @const mpw *av, *avl@ = multiplicand vector base and limit
616 * @mpw m@ = multiplier
617 *
618 * Returns: ---
619 *
620 * Use: Multiplies a multiprecision integer by a single-word value.
621 * The destination and source may be equal. The destination
622 * is completely cleared after use.
623 */
624
625 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
626 {
627 MPX_UMULN(dv, dvl, av, avl, m);
628 }
629
630 /* --- @mpx_umlan@ --- *
631 *
632 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
633 * @const mpw *av, *avl@ = multiplicand vector base and limit
634 * @mpw m@ = multiplier
635 *
636 * Returns: ---
637 *
638 * Use: Multiplies a multiprecision integer by a single-word value
639 * and adds the result to an accumulator.
640 */
641
642 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
643 {
644 MPX_UMLAN(dv, dvl, av, avl, m);
645 }
646
647 /* --- @mpx_usqr@ --- *
648 *
649 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
650 * @const mpw *av, *av@ = source vector base and limit
651 *
652 * Returns: ---
653 *
654 * Use: Performs unsigned integer squaring. The result vector must
655 * not overlap the source vector in any way.
656 */
657
658 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
659 {
660 MPX_ZERO(dv, dvl);
661
662 /* --- Main loop --- */
663
664 while (av < avl) {
665 const mpw *avv = av;
666 mpw *dvv = dv;
667 mpw a = *av;
668 mpd c;
669
670 /* --- Stop if I've run out of destination --- */
671
672 if (dvv >= dvl)
673 break;
674
675 /* --- Work out the square at this point in the proceedings --- */
676
677 {
678 mpd x = (mpd)a * (mpd)a + *dvv;
679 *dvv++ = MPW(x);
680 c = MPW(x >> MPW_BITS);
681 }
682
683 /* --- Now fix up the rest of the vector upwards --- */
684
685 avv++;
686 while (dvv < dvl && avv < avl) {
687 mpd x = (mpd)a * (mpd)*avv++;
688 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
689 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
690 *dvv++ = MPW(y);
691 }
692 while (dvv < dvl && c) {
693 mpd x = c + *dvv;
694 *dvv++ = MPW(x);
695 c = x >> MPW_BITS;
696 }
697
698 /* --- Get ready for the next round --- */
699
700 av++;
701 dv += 2;
702 }
703 }
704
705 /* --- @mpx_udiv@ --- *
706 *
707 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
708 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
709 * @const mpw *dv, *dvl@ = divisor vector base and limit
710 * @mpw *sv, *svl@ = scratch workspace
711 *
712 * Returns: ---
713 *
714 * Use: Performs unsigned integer division. If the result overflows
715 * the quotient vector, high-order bits are discarded. (Clearly
716 * the remainder vector can't overflow.) The various vectors
717 * may not overlap in any way. Yes, I know it's a bit odd
718 * requiring the dividend to be in the result position but it
719 * does make some sense really. The remainder must have
720 * headroom for at least two extra words. The scratch space
721 * must be at least one word larger than the divisor.
722 */
723
724 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
725 const mpw *dv, const mpw *dvl,
726 mpw *sv, mpw *svl)
727 {
728 unsigned norm = 0;
729 size_t scale;
730 mpw d, dd;
731
732 /* --- Initialize the quotient --- */
733
734 MPX_ZERO(qv, qvl);
735
736 /* --- Perform some sanity checks --- */
737
738 MPX_SHRINK(dv, dvl);
739 assert(((void)"division by zero in mpx_udiv", dv < dvl));
740
741 /* --- Normalize the divisor --- *
742 *
743 * The algorithm requires that the divisor be at least two digits long.
744 * This is easy to fix.
745 */
746
747 {
748 unsigned b;
749
750 d = dvl[-1];
751 for (b = MPW_BITS / 2; b; b >>= 1) {
752 if (d < (MPW_MAX >> b)) {
753 d <<= b;
754 norm += b;
755 }
756 }
757 if (dv + 1 == dvl)
758 norm += MPW_BITS;
759 }
760
761 /* --- Normalize the dividend/remainder to match --- */
762
763 if (norm) {
764 mpx_lsl(rv, rvl, rv, rvl, norm);
765 mpx_lsl(sv, svl, dv, dvl, norm);
766 dv = sv;
767 dvl = svl;
768 MPX_SHRINK(dv, dvl);
769 }
770
771 MPX_SHRINK(rv, rvl);
772 d = dvl[-1];
773 dd = dvl[-2];
774
775 /* --- Work out the relative scales --- */
776
777 {
778 size_t rvn = rvl - rv;
779 size_t dvn = dvl - dv;
780
781 /* --- If the divisor is clearly larger, notice this --- */
782
783 if (dvn > rvn) {
784 mpx_lsr(rv, rvl, rv, rvl, norm);
785 return;
786 }
787
788 scale = rvn - dvn;
789 }
790
791 /* --- Calculate the most significant quotient digit --- *
792 *
793 * Because the divisor has its top bit set, this can only happen once. The
794 * pointer arithmetic is a little contorted, to make sure that the
795 * behaviour is defined.
796 */
797
798 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
799 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
800 if (qvl - qv > scale)
801 qv[scale] = 1;
802 }
803
804 /* --- Now for the main loop --- */
805
806 {
807 mpw *rvv = rvl - 2;
808
809 while (scale) {
810 mpw q;
811 mpd rh;
812
813 /* --- Get an estimate for the next quotient digit --- */
814
815 mpw r = rvv[1];
816 mpw rr = rvv[0];
817 mpw rrr = *--rvv;
818
819 scale--;
820 rh = ((mpd)r << MPW_BITS) | rr;
821 if (r == d)
822 q = MPW_MAX;
823 else
824 q = MPW(rh / d);
825
826 /* --- Refine the estimate --- */
827
828 {
829 mpd yh = (mpd)d * q;
830 mpd yy = (mpd)dd * q;
831 mpw yl;
832
833 if (yy > MPW_MAX)
834 yh += yy >> MPW_BITS;
835 yl = MPW(yy);
836
837 while (yh > rh || (yh == rh && yl > rrr)) {
838 q--;
839 yh -= d;
840 if (yl < dd)
841 yh--;
842 yl -= dd;
843 }
844 }
845
846 /* --- Remove a chunk from the dividend --- */
847
848 {
849 mpw *svv;
850 const mpw *dvv;
851 mpw mc = 0, sc = 0;
852
853 /* --- Calculate the size of the chunk --- *
854 *
855 * This does the whole job of calculating @r >> scale - qd@.
856 */
857
858 for (svv = rv + scale, dvv = dv;
859 dvv < dvl && svv < rvl;
860 svv++, dvv++) {
861 mpd x = (mpd)*dvv * (mpd)q + mc;
862 mc = x >> MPW_BITS;
863 x = (mpd)*svv - MPW(x) - sc;
864 *svv = MPW(x);
865 if (x >> MPW_BITS)
866 sc = 1;
867 else
868 sc = 0;
869 }
870
871 if (svv < rvl) {
872 mpd x = (mpd)*svv - mc - sc;
873 *svv++ = MPW(x);
874 if (x >> MPW_BITS)
875 sc = MPW_MAX;
876 else
877 sc = 0;
878 while (svv < rvl)
879 *svv++ = sc;
880 }
881
882 /* --- Fix if the quotient was too large --- *
883 *
884 * This doesn't seem to happen very often.
885 */
886
887 if (rvl[-1] > MPW_MAX / 2) {
888 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
889 q--;
890 }
891 }
892
893 /* --- Done for another iteration --- */
894
895 if (qvl - qv > scale)
896 qv[scale] = q;
897 r = rr;
898 rr = rrr;
899 }
900 }
901
902 /* --- Now fiddle with unnormalizing and things --- */
903
904 mpx_lsr(rv, rvl, rv, rvl, norm);
905 }
906
907 /* --- @mpx_udivn@ --- *
908 *
909 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
910 * dividend)
911 * @const mpw *rv, *rvl@ = dividend
912 * @mpw d@ = single-precision divisor
913 *
914 * Returns: Remainder after divison.
915 *
916 * Use: Performs a single-precision division operation.
917 */
918
919 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
920 {
921 size_t i;
922 size_t ql = qvl - qv;
923 mpd r = 0;
924
925 i = rvl - rv;
926 while (i > 0) {
927 i--;
928 r = (r << MPW_BITS) | rv[i];
929 if (i < ql)
930 qv[i] = r / d;
931 r %= d;
932 }
933 return (MPW(r));
934 }
935
936 /*----- Test rig ----------------------------------------------------------*/
937
938 #ifdef TEST_RIG
939
940 #include <mLib/alloc.h>
941 #include <mLib/dstr.h>
942 #include <mLib/quis.h>
943 #include <mLib/testrig.h>
944
945 #include "mpscan.h"
946
947 #define ALLOC(v, vl, sz) do { \
948 size_t _sz = (sz); \
949 mpw *_vv = xmalloc(MPWS(_sz)); \
950 mpw *_vvl = _vv + _sz; \
951 (v) = _vv; \
952 (vl) = _vvl; \
953 } while (0)
954
955 #define LOAD(v, vl, d) do { \
956 const dstr *_d = (d); \
957 mpw *_v, *_vl; \
958 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
959 mpx_loadb(_v, _vl, _d->buf, _d->len); \
960 (v) = _v; \
961 (vl) = _vl; \
962 } while (0)
963
964 #define MAX(x, y) ((x) > (y) ? (x) : (y))
965
966 static void dumpbits(const char *msg, const void *pp, size_t sz)
967 {
968 const octet *p = pp;
969 fputs(msg, stderr);
970 for (; sz; sz--)
971 fprintf(stderr, " %02x", *p++);
972 fputc('\n', stderr);
973 }
974
975 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
976 {
977 fputs(msg, stderr);
978 MPX_SHRINK(v, vl);
979 while (v < vl)
980 fprintf(stderr, " %08lx", (unsigned long)*--vl);
981 fputc('\n', stderr);
982 }
983
984 static int chkscan(const mpw *v, const mpw *vl,
985 const void *pp, size_t sz, int step)
986 {
987 mpscan mps;
988 const octet *p = pp;
989 unsigned bit = 0;
990 int ok = 1;
991
992 mpscan_initx(&mps, v, vl);
993 while (sz) {
994 unsigned x = *p;
995 int i;
996 p += step;
997 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
998 if (MPSCAN_BIT(&mps) != (x & 1)) {
999 fprintf(stderr,
1000 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1001 step, bit, x & 1, MPSCAN_BIT(&mps));
1002 ok = 0;
1003 }
1004 x >>= 1;
1005 bit++;
1006 }
1007 sz--;
1008 }
1009
1010 return (ok);
1011 }
1012
1013 static int loadstore(dstr *v)
1014 {
1015 dstr d = DSTR_INIT;
1016 size_t sz = MPW_RQ(v->len) * 2, diff;
1017 mpw *m, *ml;
1018 int ok = 1;
1019
1020 dstr_ensure(&d, v->len);
1021 m = xmalloc(MPWS(sz));
1022
1023 for (diff = 0; diff < sz; diff += 5) {
1024 size_t oct;
1025
1026 ml = m + sz - diff;
1027
1028 mpx_loadl(m, ml, v->buf, v->len);
1029 if (!chkscan(m, ml, v->buf, v->len, +1))
1030 ok = 0;
1031 MPX_OCTETS(oct, m, ml);
1032 mpx_storel(m, ml, d.buf, d.sz);
1033 if (memcmp(d.buf, v->buf, oct) != 0) {
1034 dumpbits("\n*** storel failed", d.buf, d.sz);
1035 ok = 0;
1036 }
1037
1038 mpx_loadb(m, ml, v->buf, v->len);
1039 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1040 ok = 0;
1041 MPX_OCTETS(oct, m, ml);
1042 mpx_storeb(m, ml, d.buf, d.sz);
1043 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1044 dumpbits("\n*** storeb failed", d.buf, d.sz);
1045 ok = 0;
1046 }
1047 }
1048
1049 if (!ok)
1050 dumpbits("input data", v->buf, v->len);
1051
1052 free(m);
1053 dstr_destroy(&d);
1054 return (ok);
1055 }
1056
1057 static int lsl(dstr *v)
1058 {
1059 mpw *a, *al;
1060 int n = *(int *)v[1].buf;
1061 mpw *c, *cl;
1062 mpw *d, *dl;
1063 int ok = 1;
1064
1065 LOAD(a, al, &v[0]);
1066 LOAD(c, cl, &v[2]);
1067 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1068
1069 mpx_lsl(d, dl, a, al, n);
1070 if (MPX_UCMP(d, dl, !=, c, cl)) {
1071 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1072 dumpmp(" a", a, al);
1073 dumpmp("expected", c, cl);
1074 dumpmp(" result", d, dl);
1075 ok = 0;
1076 }
1077
1078 free(a); free(c); free(d);
1079 return (ok);
1080 }
1081
1082 static int lsr(dstr *v)
1083 {
1084 mpw *a, *al;
1085 int n = *(int *)v[1].buf;
1086 mpw *c, *cl;
1087 mpw *d, *dl;
1088 int ok = 1;
1089
1090 LOAD(a, al, &v[0]);
1091 LOAD(c, cl, &v[2]);
1092 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1093
1094 mpx_lsr(d, dl, a, al, n);
1095 if (MPX_UCMP(d, dl, !=, c, cl)) {
1096 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1097 dumpmp(" a", a, al);
1098 dumpmp("expected", c, cl);
1099 dumpmp(" result", d, dl);
1100 ok = 0;
1101 }
1102
1103 free(a); free(c); free(d);
1104 return (ok);
1105 }
1106
1107 static int uadd(dstr *v)
1108 {
1109 mpw *a, *al;
1110 mpw *b, *bl;
1111 mpw *c, *cl;
1112 mpw *d, *dl;
1113 int ok = 1;
1114
1115 LOAD(a, al, &v[0]);
1116 LOAD(b, bl, &v[1]);
1117 LOAD(c, cl, &v[2]);
1118 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1119
1120 mpx_uadd(d, dl, a, al, b, bl);
1121 if (MPX_UCMP(d, dl, !=, c, cl)) {
1122 fprintf(stderr, "\n*** uadd failed\n");
1123 dumpmp(" a", a, al);
1124 dumpmp(" b", b, bl);
1125 dumpmp("expected", c, cl);
1126 dumpmp(" result", d, dl);
1127 ok = 0;
1128 }
1129
1130 free(a); free(b); free(c); free(d);
1131 return (ok);
1132 }
1133
1134 static int usub(dstr *v)
1135 {
1136 mpw *a, *al;
1137 mpw *b, *bl;
1138 mpw *c, *cl;
1139 mpw *d, *dl;
1140 int ok = 1;
1141
1142 LOAD(a, al, &v[0]);
1143 LOAD(b, bl, &v[1]);
1144 LOAD(c, cl, &v[2]);
1145 ALLOC(d, dl, al - a);
1146
1147 mpx_usub(d, dl, a, al, b, bl);
1148 if (MPX_UCMP(d, dl, !=, c, cl)) {
1149 fprintf(stderr, "\n*** usub failed\n");
1150 dumpmp(" a", a, al);
1151 dumpmp(" b", b, bl);
1152 dumpmp("expected", c, cl);
1153 dumpmp(" result", d, dl);
1154 ok = 0;
1155 }
1156
1157 free(a); free(b); free(c); free(d);
1158 return (ok);
1159 }
1160
1161 static int umul(dstr *v)
1162 {
1163 mpw *a, *al;
1164 mpw *b, *bl;
1165 mpw *c, *cl;
1166 mpw *d, *dl;
1167 int ok = 1;
1168
1169 LOAD(a, al, &v[0]);
1170 LOAD(b, bl, &v[1]);
1171 LOAD(c, cl, &v[2]);
1172 ALLOC(d, dl, (al - a) + (bl - b));
1173
1174 mpx_umul(d, dl, a, al, b, bl);
1175 if (MPX_UCMP(d, dl, !=, c, cl)) {
1176 fprintf(stderr, "\n*** umul failed\n");
1177 dumpmp(" a", a, al);
1178 dumpmp(" b", b, bl);
1179 dumpmp("expected", c, cl);
1180 dumpmp(" result", d, dl);
1181 ok = 0;
1182 }
1183
1184 free(a); free(b); free(c); free(d);
1185 return (ok);
1186 }
1187
1188 static int usqr(dstr *v)
1189 {
1190 mpw *a, *al;
1191 mpw *c, *cl;
1192 mpw *d, *dl;
1193 int ok = 1;
1194
1195 LOAD(a, al, &v[0]);
1196 LOAD(c, cl, &v[1]);
1197 ALLOC(d, dl, 2 * (al - a));
1198
1199 mpx_usqr(d, dl, a, al);
1200 if (MPX_UCMP(d, dl, !=, c, cl)) {
1201 fprintf(stderr, "\n*** usqr failed\n");
1202 dumpmp(" a", a, al);
1203 dumpmp("expected", c, cl);
1204 dumpmp(" result", d, dl);
1205 ok = 0;
1206 }
1207
1208 free(a); free(c); free(d);
1209 return (ok);
1210 }
1211
1212 static int udiv(dstr *v)
1213 {
1214 mpw *a, *al;
1215 mpw *b, *bl;
1216 mpw *q, *ql;
1217 mpw *r, *rl;
1218 mpw *qq, *qql;
1219 mpw *s, *sl;
1220 int ok = 1;
1221
1222 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1223 LOAD(b, bl, &v[1]);
1224 LOAD(q, ql, &v[2]);
1225 LOAD(r, rl, &v[3]);
1226 ALLOC(qq, qql, al - a);
1227 ALLOC(s, sl, (bl - b) + 1);
1228
1229 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1230 if (MPX_UCMP(qq, qql, !=, q, ql) ||
1231 MPX_UCMP(a, al, !=, r, rl)) {
1232 fprintf(stderr, "\n*** udiv failed\n");
1233 dumpmp(" divisor", b, bl);
1234 dumpmp("expect r", r, rl);
1235 dumpmp("result r", a, al);
1236 dumpmp("expect q", q, ql);
1237 dumpmp("result q", qq, qql);
1238 ok = 0;
1239 }
1240
1241 free(a); free(b); free(r); free(q); free(s); free(qq);
1242 return (ok);
1243 }
1244
1245 static test_chunk defs[] = {
1246 { "load-store", loadstore, { &type_hex, 0 } },
1247 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1248 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1249 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1250 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1251 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1252 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1253 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1254 { 0, 0, { 0 } }
1255 };
1256
1257 int main(int argc, char *argv[])
1258 {
1259 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1260 return (0);
1261 }
1262
1263
1264 #endif
1265
1266 /*----- That's all, folks -------------------------------------------------*/