Expunge revision histories in files.
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.20 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <assert.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36
37 #include <mLib/bits.h>
38
39 #include "mptypes.h"
40 #include "mpx.h"
41 #include "bitops.h"
42
43 /*----- Loading and storing -----------------------------------------------*/
44
45 /* --- @mpx_storel@ --- *
46 *
47 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
48 * @void *pp@ = pointer to octet array
49 * @size_t sz@ = size of octet array
50 *
51 * Returns: ---
52 *
53 * Use: Stores an MP in an octet array, least significant octet
54 * first. High-end octets are silently discarded if there
55 * isn't enough space for them.
56 */
57
58 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
59 {
60 mpw n, w = 0;
61 octet *p = pp, *q = p + sz;
62 unsigned bits = 0;
63
64 while (p < q) {
65 if (bits < 8) {
66 if (v >= vl) {
67 *p++ = U8(w);
68 break;
69 }
70 n = *v++;
71 *p++ = U8(w | n << bits);
72 w = n >> (8 - bits);
73 bits += MPW_BITS - 8;
74 } else {
75 *p++ = U8(w);
76 w >>= 8;
77 bits -= 8;
78 }
79 }
80 memset(p, 0, q - p);
81 }
82
83 /* --- @mpx_loadl@ --- *
84 *
85 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
86 * @const void *pp@ = pointer to octet array
87 * @size_t sz@ = size of octet array
88 *
89 * Returns: ---
90 *
91 * Use: Loads an MP in an octet array, least significant octet
92 * first. High-end octets are ignored if there isn't enough
93 * space for them.
94 */
95
96 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
97 {
98 unsigned n;
99 mpw w = 0;
100 const octet *p = pp, *q = p + sz;
101 unsigned bits = 0;
102
103 if (v >= vl)
104 return;
105 while (p < q) {
106 n = U8(*p++);
107 w |= n << bits;
108 bits += 8;
109 if (bits >= MPW_BITS) {
110 *v++ = MPW(w);
111 w = n >> (MPW_BITS - bits + 8);
112 bits -= MPW_BITS;
113 if (v >= vl)
114 return;
115 }
116 }
117 *v++ = w;
118 MPX_ZERO(v, vl);
119 }
120
121 /* --- @mpx_storeb@ --- *
122 *
123 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
124 * @void *pp@ = pointer to octet array
125 * @size_t sz@ = size of octet array
126 *
127 * Returns: ---
128 *
129 * Use: Stores an MP in an octet array, most significant octet
130 * first. High-end octets are silently discarded if there
131 * isn't enough space for them.
132 */
133
134 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
135 {
136 mpw n, w = 0;
137 octet *p = pp, *q = p + sz;
138 unsigned bits = 0;
139
140 while (q > p) {
141 if (bits < 8) {
142 if (v >= vl) {
143 *--q = U8(w);
144 break;
145 }
146 n = *v++;
147 *--q = U8(w | n << bits);
148 w = n >> (8 - bits);
149 bits += MPW_BITS - 8;
150 } else {
151 *--q = U8(w);
152 w >>= 8;
153 bits -= 8;
154 }
155 }
156 memset(p, 0, q - p);
157 }
158
159 /* --- @mpx_loadb@ --- *
160 *
161 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
162 * @const void *pp@ = pointer to octet array
163 * @size_t sz@ = size of octet array
164 *
165 * Returns: ---
166 *
167 * Use: Loads an MP in an octet array, most significant octet
168 * first. High-end octets are ignored if there isn't enough
169 * space for them.
170 */
171
172 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
173 {
174 unsigned n;
175 mpw w = 0;
176 const octet *p = pp, *q = p + sz;
177 unsigned bits = 0;
178
179 if (v >= vl)
180 return;
181 while (q > p) {
182 n = U8(*--q);
183 w |= n << bits;
184 bits += 8;
185 if (bits >= MPW_BITS) {
186 *v++ = MPW(w);
187 w = n >> (MPW_BITS - bits + 8);
188 bits -= MPW_BITS;
189 if (v >= vl)
190 return;
191 }
192 }
193 *v++ = w;
194 MPX_ZERO(v, vl);
195 }
196
197 /* --- @mpx_storel2cn@ --- *
198 *
199 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
200 * @void *pp@ = pointer to octet array
201 * @size_t sz@ = size of octet array
202 *
203 * Returns: ---
204 *
205 * Use: Stores a negative MP in an octet array, least significant
206 * octet first, as two's complement. High-end octets are
207 * silently discarded if there isn't enough space for them.
208 * This obviously makes the output bad.
209 */
210
211 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
212 {
213 unsigned c = 1;
214 unsigned b = 0;
215 mpw n, w = 0;
216 octet *p = pp, *q = p + sz;
217 unsigned bits = 0;
218
219 while (p < q) {
220 if (bits < 8) {
221 if (v >= vl) {
222 b = w;
223 break;
224 }
225 n = *v++;
226 b = w | n << bits;
227 w = n >> (8 - bits);
228 bits += MPW_BITS - 8;
229 } else {
230 b = w;
231 w >>= 8;
232 bits -= 8;
233 }
234 b = U8(~b + c);
235 c = c && !b;
236 *p++ = b;
237 }
238 while (p < q) {
239 b = U8(~b + c);
240 c = c && !b;
241 *p++ = b;
242 b = 0;
243 }
244 }
245
246 /* --- @mpx_loadl2cn@ --- *
247 *
248 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
249 * @const void *pp@ = pointer to octet array
250 * @size_t sz@ = size of octet array
251 *
252 * Returns: ---
253 *
254 * Use: Loads a negative MP in an octet array, least significant
255 * octet first, as two's complement. High-end octets are
256 * ignored if there isn't enough space for them. This probably
257 * means you made the wrong choice coming here.
258 */
259
260 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
261 {
262 unsigned n;
263 unsigned c = 1;
264 mpw w = 0;
265 const octet *p = pp, *q = p + sz;
266 unsigned bits = 0;
267
268 if (v >= vl)
269 return;
270 while (p < q) {
271 n = U8(~(*p++) + c);
272 c = c && !n;
273 w |= n << bits;
274 bits += 8;
275 if (bits >= MPW_BITS) {
276 *v++ = MPW(w);
277 w = n >> (MPW_BITS - bits + 8);
278 bits -= MPW_BITS;
279 if (v >= vl)
280 return;
281 }
282 }
283 *v++ = w;
284 MPX_ZERO(v, vl);
285 }
286
287 /* --- @mpx_storeb2cn@ --- *
288 *
289 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
290 * @void *pp@ = pointer to octet array
291 * @size_t sz@ = size of octet array
292 *
293 * Returns: ---
294 *
295 * Use: Stores a negative MP in an octet array, most significant
296 * octet first, as two's complement. High-end octets are
297 * silently discarded if there isn't enough space for them,
298 * which probably isn't what you meant.
299 */
300
301 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
302 {
303 mpw n, w = 0;
304 unsigned b = 0;
305 unsigned c = 1;
306 octet *p = pp, *q = p + sz;
307 unsigned bits = 0;
308
309 while (q > p) {
310 if (bits < 8) {
311 if (v >= vl) {
312 b = w;
313 break;
314 }
315 n = *v++;
316 b = w | n << bits;
317 w = n >> (8 - bits);
318 bits += MPW_BITS - 8;
319 } else {
320 b = w;
321 w >>= 8;
322 bits -= 8;
323 }
324 b = U8(~b + c);
325 c = c && !b;
326 *--q = b;
327 }
328 while (q > p) {
329 b = ~b + c;
330 c = c && !(b & 0xff);
331 *--q = b;
332 b = 0;
333 }
334 }
335
336 /* --- @mpx_loadb2cn@ --- *
337 *
338 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
339 * @const void *pp@ = pointer to octet array
340 * @size_t sz@ = size of octet array
341 *
342 * Returns: ---
343 *
344 * Use: Loads a negative MP in an octet array, most significant octet
345 * first as two's complement. High-end octets are ignored if
346 * there isn't enough space for them. This probably means you
347 * chose this function wrongly.
348 */
349
350 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
351 {
352 unsigned n;
353 unsigned c = 1;
354 mpw w = 0;
355 const octet *p = pp, *q = p + sz;
356 unsigned bits = 0;
357
358 if (v >= vl)
359 return;
360 while (q > p) {
361 n = U8(~(*--q) + c);
362 c = c && !n;
363 w |= n << bits;
364 bits += 8;
365 if (bits >= MPW_BITS) {
366 *v++ = MPW(w);
367 w = n >> (MPW_BITS - bits + 8);
368 bits -= MPW_BITS;
369 if (v >= vl)
370 return;
371 }
372 }
373 *v++ = w;
374 MPX_ZERO(v, vl);
375 }
376
377 /*----- Logical shifting --------------------------------------------------*/
378
379 /* --- @mpx_lsl@ --- *
380 *
381 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
382 * @const mpw *av, *avl@ = source vector base and limit
383 * @size_t n@ = number of bit positions to shift by
384 *
385 * Returns: ---
386 *
387 * Use: Performs a logical shift left operation on an integer.
388 */
389
390 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
391 {
392 size_t nw;
393 unsigned nb;
394
395 /* --- Trivial special case --- */
396
397 if (n == 0)
398 MPX_COPY(dv, dvl, av, avl);
399
400 /* --- Single bit shifting --- */
401
402 else if (n == 1) {
403 mpw w = 0;
404 while (av < avl) {
405 mpw t;
406 if (dv >= dvl)
407 goto done;
408 t = *av++;
409 *dv++ = MPW((t << 1) | w);
410 w = t >> (MPW_BITS - 1);
411 }
412 if (dv >= dvl)
413 goto done;
414 *dv++ = MPW(w);
415 MPX_ZERO(dv, dvl);
416 goto done;
417 }
418
419 /* --- Break out word and bit shifts for more sophisticated work --- */
420
421 nw = n / MPW_BITS;
422 nb = n % MPW_BITS;
423
424 /* --- Handle a shift by a multiple of the word size --- */
425
426 if (nb == 0) {
427 if (nw >= dvl - dv)
428 MPX_ZERO(dv, dvl);
429 else {
430 MPX_COPY(dv + nw, dvl, av, avl);
431 memset(dv, 0, MPWS(nw));
432 }
433 }
434
435 /* --- And finally the difficult case --- *
436 *
437 * This is a little convoluted, because I have to start from the end and
438 * work backwards to avoid overwriting the source, if they're both the same
439 * block of memory.
440 */
441
442 else {
443 mpw w;
444 size_t nr = MPW_BITS - nb;
445 size_t dvn = dvl - dv;
446 size_t avn = avl - av;
447
448 if (dvn <= nw) {
449 MPX_ZERO(dv, dvl);
450 goto done;
451 }
452
453 if (dvn > avn + nw) {
454 size_t off = avn + nw + 1;
455 MPX_ZERO(dv + off, dvl);
456 dvl = dv + off;
457 w = 0;
458 } else {
459 avl = av + dvn - nw;
460 w = *--avl << nb;
461 }
462
463 while (avl > av) {
464 mpw t = *--avl;
465 *--dvl = (t >> nr) | w;
466 w = t << nb;
467 }
468
469 *--dvl = w;
470 MPX_ZERO(dv, dvl);
471 }
472
473 done:;
474 }
475
476 /* --- @mpx_lslc@ --- *
477 *
478 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
479 * @const mpw *av, *avl@ = source vector base and limit
480 * @size_t n@ = number of bit positions to shift by
481 *
482 * Returns: ---
483 *
484 * Use: Performs a logical shift left operation on an integer, only
485 * it fills in the bits with ones instead of zeroes.
486 */
487
488 void mpx_lslc(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
489 {
490 size_t nw;
491 unsigned nb;
492
493 /* --- Trivial special case --- */
494
495 if (n == 0)
496 MPX_COPY(dv, dvl, av, avl);
497
498 /* --- Single bit shifting --- */
499
500 else if (n == 1) {
501 mpw w = 1;
502 while (av < avl) {
503 mpw t;
504 if (dv >= dvl)
505 goto done;
506 t = *av++;
507 *dv++ = MPW((t << 1) | w);
508 w = t >> (MPW_BITS - 1);
509 }
510 if (dv >= dvl)
511 goto done;
512 *dv++ = MPW(w);
513 MPX_ZERO(dv, dvl);
514 goto done;
515 }
516
517 /* --- Break out word and bit shifts for more sophisticated work --- */
518
519 nw = n / MPW_BITS;
520 nb = n % MPW_BITS;
521
522 /* --- Handle a shift by a multiple of the word size --- */
523
524 if (nb == 0) {
525 if (nw >= dvl - dv)
526 MPX_ONE(dv, dvl);
527 else {
528 MPX_COPY(dv + nw, dvl, av, avl);
529 MPX_ONE(dv, dv + nw);
530 }
531 }
532
533 /* --- And finally the difficult case --- *
534 *
535 * This is a little convoluted, because I have to start from the end and
536 * work backwards to avoid overwriting the source, if they're both the same
537 * block of memory.
538 */
539
540 else {
541 mpw w;
542 size_t nr = MPW_BITS - nb;
543 size_t dvn = dvl - dv;
544 size_t avn = avl - av;
545
546 if (dvn <= nw) {
547 MPX_ONE(dv, dvl);
548 goto done;
549 }
550
551 if (dvn > avn + nw) {
552 size_t off = avn + nw + 1;
553 MPX_ZERO(dv + off, dvl);
554 dvl = dv + off;
555 w = 0;
556 } else {
557 avl = av + dvn - nw;
558 w = *--avl << nb;
559 }
560
561 while (avl > av) {
562 mpw t = *--avl;
563 *--dvl = (t >> nr) | w;
564 w = t << nb;
565 }
566
567 *--dvl = (MPW_MAX >> nr) | w;
568 MPX_ONE(dv, dvl);
569 }
570
571 done:;
572 }
573
574 /* --- @mpx_lsr@ --- *
575 *
576 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
577 * @const mpw *av, *avl@ = source vector base and limit
578 * @size_t n@ = number of bit positions to shift by
579 *
580 * Returns: ---
581 *
582 * Use: Performs a logical shift right operation on an integer.
583 */
584
585 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
586 {
587 size_t nw;
588 unsigned nb;
589
590 /* --- Trivial special case --- */
591
592 if (n == 0)
593 MPX_COPY(dv, dvl, av, avl);
594
595 /* --- Single bit shifting --- */
596
597 else if (n == 1) {
598 mpw w = av < avl ? *av++ >> 1 : 0;
599 while (av < avl) {
600 mpw t;
601 if (dv >= dvl)
602 goto done;
603 t = *av++;
604 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
605 w = t >> 1;
606 }
607 if (dv >= dvl)
608 goto done;
609 *dv++ = MPW(w);
610 MPX_ZERO(dv, dvl);
611 goto done;
612 }
613
614 /* --- Break out word and bit shifts for more sophisticated work --- */
615
616 nw = n / MPW_BITS;
617 nb = n % MPW_BITS;
618
619 /* --- Handle a shift by a multiple of the word size --- */
620
621 if (nb == 0) {
622 if (nw >= avl - av)
623 MPX_ZERO(dv, dvl);
624 else
625 MPX_COPY(dv, dvl, av + nw, avl);
626 }
627
628 /* --- And finally the difficult case --- */
629
630 else {
631 mpw w;
632 size_t nr = MPW_BITS - nb;
633
634 av += nw;
635 w = av < avl ? *av++ : 0;
636 while (av < avl) {
637 mpw t;
638 if (dv >= dvl)
639 goto done;
640 t = *av++;
641 *dv++ = MPW((w >> nb) | (t << nr));
642 w = t;
643 }
644 if (dv < dvl) {
645 *dv++ = MPW(w >> nb);
646 MPX_ZERO(dv, dvl);
647 }
648 }
649
650 done:;
651 }
652
653 /*----- Bitwise operations ------------------------------------------------*/
654
655 /* --- @mpx_bitop@ --- *
656 *
657 * Arguments: @mpw *dv, *dvl@ = destination vector
658 * @const mpw *av, *avl@ = first source vector
659 * @const mpw *bv, *bvl@ = second source vector
660 *
661 * Returns: ---
662 *
663 * Use; Provides the dyadic boolean functions.
664 */
665
666 #define MPX_BITBINOP(string) \
667 \
668 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
669 const mpw *bv, const mpw *bvl) \
670 { \
671 MPX_SHRINK(av, avl); \
672 MPX_SHRINK(bv, bvl); \
673 \
674 while (dv < dvl) { \
675 mpw a, b; \
676 a = (av < avl) ? *av++ : 0; \
677 b = (bv < bvl) ? *bv++ : 0; \
678 *dv++ = B##string(a, b); \
679 } \
680 }
681
682 MPX_DOBIN(MPX_BITBINOP)
683
684 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
685 {
686 MPX_SHRINK(av, avl);
687
688 while (dv < dvl) {
689 mpw a;
690 a = (av < avl) ? *av++ : 0;
691 *dv++ = ~a;
692 }
693 }
694
695 /*----- Unsigned arithmetic -----------------------------------------------*/
696
697 /* --- @mpx_2c@ --- *
698 *
699 * Arguments: @mpw *dv, *dvl@ = destination vector
700 * @const mpw *v, *vl@ = source vector
701 *
702 * Returns: ---
703 *
704 * Use: Calculates the two's complement of @v@.
705 */
706
707 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
708 {
709 mpw c = 0;
710 while (dv < dvl && v < vl)
711 *dv++ = c = MPW(~*v++);
712 if (dv < dvl) {
713 if (c > MPW_MAX / 2)
714 c = MPW(~0);
715 while (dv < dvl)
716 *dv++ = c;
717 }
718 MPX_UADDN(dv, dvl, 1);
719 }
720
721 /* --- @mpx_ueq@ --- *
722 *
723 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
724 * @const mpw *bv, *bvl@ = second argument vector base and limit
725 *
726 * Returns: Nonzero if the two vectors are equal.
727 *
728 * Use: Performs an unsigned integer test for equality.
729 */
730
731 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
732 {
733 MPX_SHRINK(av, avl);
734 MPX_SHRINK(bv, bvl);
735 if (avl - av != bvl - bv)
736 return (0);
737 while (av < avl) {
738 if (*av++ != *bv++)
739 return (0);
740 }
741 return (1);
742 }
743
744 /* --- @mpx_ucmp@ --- *
745 *
746 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
747 * @const mpw *bv, *bvl@ = second argument vector base and limit
748 *
749 * Returns: Less than, equal to, or greater than zero depending on
750 * whether @a@ is less than, equal to or greater than @b@,
751 * respectively.
752 *
753 * Use: Performs an unsigned integer comparison.
754 */
755
756 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
757 {
758 MPX_SHRINK(av, avl);
759 MPX_SHRINK(bv, bvl);
760
761 if (avl - av > bvl - bv)
762 return (+1);
763 else if (avl - av < bvl - bv)
764 return (-1);
765 else while (avl > av) {
766 mpw a = *--avl, b = *--bvl;
767 if (a > b)
768 return (+1);
769 else if (a < b)
770 return (-1);
771 }
772 return (0);
773 }
774
775 /* --- @mpx_uadd@ --- *
776 *
777 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
778 * @const mpw *av, *avl@ = first addend vector base and limit
779 * @const mpw *bv, *bvl@ = second addend vector base and limit
780 *
781 * Returns: ---
782 *
783 * Use: Performs unsigned integer addition. If the result overflows
784 * the destination vector, high-order bits are discarded. This
785 * means that two's complement addition happens more or less for
786 * free, although that's more a side-effect than anything else.
787 * The result vector may be equal to either or both source
788 * vectors, but may not otherwise overlap them.
789 */
790
791 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
792 const mpw *bv, const mpw *bvl)
793 {
794 mpw c = 0;
795
796 while (av < avl || bv < bvl) {
797 mpw a, b;
798 mpd x;
799 if (dv >= dvl)
800 return;
801 a = (av < avl) ? *av++ : 0;
802 b = (bv < bvl) ? *bv++ : 0;
803 x = (mpd)a + (mpd)b + c;
804 *dv++ = MPW(x);
805 c = x >> MPW_BITS;
806 }
807 if (dv < dvl) {
808 *dv++ = c;
809 MPX_ZERO(dv, dvl);
810 }
811 }
812
813 /* --- @mpx_uaddn@ --- *
814 *
815 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
816 * @mpw n@ = other addend
817 *
818 * Returns: ---
819 *
820 * Use: Adds a small integer to a multiprecision number.
821 */
822
823 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
824
825 /* --- @mpx_uaddnlsl@ --- *
826 *
827 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
828 * @mpw a@ = second argument
829 * @unsigned o@ = offset in bits
830 *
831 * Returns: ---
832 *
833 * Use: Computes %$d + 2^o a$%. If the result overflows then
834 * high-order bits are discarded, as usual. We must have
835 * @0 < o < MPW_BITS@.
836 */
837
838 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
839 {
840 mpd x = (mpd)a << o;
841
842 while (x && dv < dvl) {
843 x += *dv;
844 *dv++ = MPW(x);
845 x >>= MPW_BITS;
846 }
847 }
848
849 /* --- @mpx_usub@ --- *
850 *
851 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
852 * @const mpw *av, *avl@ = first argument vector base and limit
853 * @const mpw *bv, *bvl@ = second argument vector base and limit
854 *
855 * Returns: ---
856 *
857 * Use: Performs unsigned integer subtraction. If the result
858 * overflows the destination vector, high-order bits are
859 * discarded. This means that two's complement subtraction
860 * happens more or less for free, althuogh that's more a side-
861 * effect than anything else. The result vector may be equal to
862 * either or both source vectors, but may not otherwise overlap
863 * them.
864 */
865
866 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
867 const mpw *bv, const mpw *bvl)
868 {
869 mpw c = 0;
870
871 while (av < avl || bv < bvl) {
872 mpw a, b;
873 mpd x;
874 if (dv >= dvl)
875 return;
876 a = (av < avl) ? *av++ : 0;
877 b = (bv < bvl) ? *bv++ : 0;
878 x = (mpd)a - (mpd)b - c;
879 *dv++ = MPW(x);
880 if (x >> MPW_BITS)
881 c = 1;
882 else
883 c = 0;
884 }
885 if (c)
886 c = MPW_MAX;
887 while (dv < dvl)
888 *dv++ = c;
889 }
890
891 /* --- @mpx_usubn@ --- *
892 *
893 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
894 * @n@ = subtrahend
895 *
896 * Returns: ---
897 *
898 * Use: Subtracts a small integer from a multiprecision number.
899 */
900
901 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
902
903 /* --- @mpx_uaddnlsl@ --- *
904 *
905 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
906 * @mpw a@ = second argument
907 * @unsigned o@ = offset in bits
908 *
909 * Returns: ---
910 *
911 * Use: Computes %$d + 2^o a$%. If the result overflows then
912 * high-order bits are discarded, as usual. We must have
913 * @0 < o < MPW_BITS@.
914 */
915
916 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
917 {
918 mpw b = a >> (MPW_BITS - o);
919 a <<= o;
920
921 if (dv < dvl) {
922 mpd x = (mpd)*dv - (mpd)a;
923 *dv++ = MPW(x);
924 if (x >> MPW_BITS)
925 b++;
926 MPX_USUBN(dv, dvl, b);
927 }
928 }
929
930 /* --- @mpx_umul@ --- *
931 *
932 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
933 * @const mpw *av, *avl@ = multiplicand vector base and limit
934 * @const mpw *bv, *bvl@ = multiplier vector base and limit
935 *
936 * Returns: ---
937 *
938 * Use: Performs unsigned integer multiplication. If the result
939 * overflows the desination vector, high-order bits are
940 * discarded. The result vector may not overlap the argument
941 * vectors in any way.
942 */
943
944 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
945 const mpw *bv, const mpw *bvl)
946 {
947 /* --- This is probably worthwhile on a multiply --- */
948
949 MPX_SHRINK(av, avl);
950 MPX_SHRINK(bv, bvl);
951
952 /* --- Deal with a multiply by zero --- */
953
954 if (bv == bvl) {
955 MPX_ZERO(dv, dvl);
956 return;
957 }
958
959 /* --- Do the initial multiply and initialize the accumulator --- */
960
961 MPX_UMULN(dv, dvl, av, avl, *bv++);
962
963 /* --- Do the remaining multiply/accumulates --- */
964
965 while (dv < dvl && bv < bvl) {
966 mpw m = *bv++;
967 mpw c = 0;
968 const mpw *avv = av;
969 mpw *dvv = ++dv;
970
971 while (avv < avl) {
972 mpd x;
973 if (dvv >= dvl)
974 goto next;
975 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
976 *dvv++ = MPW(x);
977 c = x >> MPW_BITS;
978 }
979 MPX_UADDN(dvv, dvl, c);
980 next:;
981 }
982 }
983
984 /* --- @mpx_umuln@ --- *
985 *
986 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
987 * @const mpw *av, *avl@ = multiplicand vector base and limit
988 * @mpw m@ = multiplier
989 *
990 * Returns: ---
991 *
992 * Use: Multiplies a multiprecision integer by a single-word value.
993 * The destination and source may be equal. The destination
994 * is completely cleared after use.
995 */
996
997 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
998 {
999 MPX_UMULN(dv, dvl, av, avl, m);
1000 }
1001
1002 /* --- @mpx_umlan@ --- *
1003 *
1004 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
1005 * @const mpw *av, *avl@ = multiplicand vector base and limit
1006 * @mpw m@ = multiplier
1007 *
1008 * Returns: ---
1009 *
1010 * Use: Multiplies a multiprecision integer by a single-word value
1011 * and adds the result to an accumulator.
1012 */
1013
1014 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1015 {
1016 MPX_UMLAN(dv, dvl, av, avl, m);
1017 }
1018
1019 /* --- @mpx_usqr@ --- *
1020 *
1021 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1022 * @const mpw *av, *av@ = source vector base and limit
1023 *
1024 * Returns: ---
1025 *
1026 * Use: Performs unsigned integer squaring. The result vector must
1027 * not overlap the source vector in any way.
1028 */
1029
1030 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
1031 {
1032 MPX_ZERO(dv, dvl);
1033
1034 /* --- Main loop --- */
1035
1036 while (av < avl) {
1037 const mpw *avv = av;
1038 mpw *dvv = dv;
1039 mpw a = *av;
1040 mpd c;
1041
1042 /* --- Stop if I've run out of destination --- */
1043
1044 if (dvv >= dvl)
1045 break;
1046
1047 /* --- Work out the square at this point in the proceedings --- */
1048
1049 {
1050 mpd x = (mpd)a * (mpd)a + *dvv;
1051 *dvv++ = MPW(x);
1052 c = MPW(x >> MPW_BITS);
1053 }
1054
1055 /* --- Now fix up the rest of the vector upwards --- */
1056
1057 avv++;
1058 while (dvv < dvl && avv < avl) {
1059 mpd x = (mpd)a * (mpd)*avv++;
1060 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1061 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1062 *dvv++ = MPW(y);
1063 }
1064 while (dvv < dvl && c) {
1065 mpd x = c + *dvv;
1066 *dvv++ = MPW(x);
1067 c = x >> MPW_BITS;
1068 }
1069
1070 /* --- Get ready for the next round --- */
1071
1072 av++;
1073 dv += 2;
1074 }
1075 }
1076
1077 /* --- @mpx_udiv@ --- *
1078 *
1079 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1080 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1081 * @const mpw *dv, *dvl@ = divisor vector base and limit
1082 * @mpw *sv, *svl@ = scratch workspace
1083 *
1084 * Returns: ---
1085 *
1086 * Use: Performs unsigned integer division. If the result overflows
1087 * the quotient vector, high-order bits are discarded. (Clearly
1088 * the remainder vector can't overflow.) The various vectors
1089 * may not overlap in any way. Yes, I know it's a bit odd
1090 * requiring the dividend to be in the result position but it
1091 * does make some sense really. The remainder must have
1092 * headroom for at least two extra words. The scratch space
1093 * must be at least one word larger than the divisor.
1094 */
1095
1096 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1097 const mpw *dv, const mpw *dvl,
1098 mpw *sv, mpw *svl)
1099 {
1100 unsigned norm = 0;
1101 size_t scale;
1102 mpw d, dd;
1103
1104 /* --- Initialize the quotient --- */
1105
1106 MPX_ZERO(qv, qvl);
1107
1108 /* --- Perform some sanity checks --- */
1109
1110 MPX_SHRINK(dv, dvl);
1111 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1112
1113 /* --- Normalize the divisor --- *
1114 *
1115 * The algorithm requires that the divisor be at least two digits long.
1116 * This is easy to fix.
1117 */
1118
1119 {
1120 unsigned b;
1121
1122 d = dvl[-1];
1123 for (b = MPW_BITS / 2; b; b >>= 1) {
1124 if (d <= (MPW_MAX >> b)) {
1125 d <<= b;
1126 norm += b;
1127 }
1128 }
1129 if (dv + 1 == dvl)
1130 norm += MPW_BITS;
1131 }
1132
1133 /* --- Normalize the dividend/remainder to match --- */
1134
1135 if (norm) {
1136 mpx_lsl(rv, rvl, rv, rvl, norm);
1137 mpx_lsl(sv, svl, dv, dvl, norm);
1138 dv = sv;
1139 dvl = svl;
1140 MPX_SHRINK(dv, dvl);
1141 }
1142
1143 MPX_SHRINK(rv, rvl);
1144 d = dvl[-1];
1145 dd = dvl[-2];
1146
1147 /* --- Work out the relative scales --- */
1148
1149 {
1150 size_t rvn = rvl - rv;
1151 size_t dvn = dvl - dv;
1152
1153 /* --- If the divisor is clearly larger, notice this --- */
1154
1155 if (dvn > rvn) {
1156 mpx_lsr(rv, rvl, rv, rvl, norm);
1157 return;
1158 }
1159
1160 scale = rvn - dvn;
1161 }
1162
1163 /* --- Calculate the most significant quotient digit --- *
1164 *
1165 * Because the divisor has its top bit set, this can only happen once. The
1166 * pointer arithmetic is a little contorted, to make sure that the
1167 * behaviour is defined.
1168 */
1169
1170 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1171 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1172 if (qvl - qv > scale)
1173 qv[scale] = 1;
1174 }
1175
1176 /* --- Now for the main loop --- */
1177
1178 {
1179 mpw *rvv = rvl - 2;
1180
1181 while (scale) {
1182 mpw q;
1183 mpd rh;
1184
1185 /* --- Get an estimate for the next quotient digit --- */
1186
1187 mpw r = rvv[1];
1188 mpw rr = rvv[0];
1189 mpw rrr = *--rvv;
1190
1191 scale--;
1192 rh = ((mpd)r << MPW_BITS) | rr;
1193 if (r == d)
1194 q = MPW_MAX;
1195 else
1196 q = MPW(rh / d);
1197
1198 /* --- Refine the estimate --- */
1199
1200 {
1201 mpd yh = (mpd)d * q;
1202 mpd yy = (mpd)dd * q;
1203 mpw yl;
1204
1205 if (yy > MPW_MAX)
1206 yh += yy >> MPW_BITS;
1207 yl = MPW(yy);
1208
1209 while (yh > rh || (yh == rh && yl > rrr)) {
1210 q--;
1211 yh -= d;
1212 if (yl < dd)
1213 yh--;
1214 yl = MPW(yl - dd);
1215 }
1216 }
1217
1218 /* --- Remove a chunk from the dividend --- */
1219
1220 {
1221 mpw *svv;
1222 const mpw *dvv;
1223 mpw mc = 0, sc = 0;
1224
1225 /* --- Calculate the size of the chunk --- *
1226 *
1227 * This does the whole job of calculating @r >> scale - qd@.
1228 */
1229
1230 for (svv = rv + scale, dvv = dv;
1231 dvv < dvl && svv < rvl;
1232 svv++, dvv++) {
1233 mpd x = (mpd)*dvv * (mpd)q + mc;
1234 mc = x >> MPW_BITS;
1235 x = (mpd)*svv - MPW(x) - sc;
1236 *svv = MPW(x);
1237 if (x >> MPW_BITS)
1238 sc = 1;
1239 else
1240 sc = 0;
1241 }
1242
1243 if (svv < rvl) {
1244 mpd x = (mpd)*svv - mc - sc;
1245 *svv++ = MPW(x);
1246 if (x >> MPW_BITS)
1247 sc = MPW_MAX;
1248 else
1249 sc = 0;
1250 while (svv < rvl)
1251 *svv++ = sc;
1252 }
1253
1254 /* --- Fix if the quotient was too large --- *
1255 *
1256 * This doesn't seem to happen very often.
1257 */
1258
1259 if (rvl[-1] > MPW_MAX / 2) {
1260 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1261 q--;
1262 }
1263 }
1264
1265 /* --- Done for another iteration --- */
1266
1267 if (qvl - qv > scale)
1268 qv[scale] = q;
1269 r = rr;
1270 rr = rrr;
1271 }
1272 }
1273
1274 /* --- Now fiddle with unnormalizing and things --- */
1275
1276 mpx_lsr(rv, rvl, rv, rvl, norm);
1277 }
1278
1279 /* --- @mpx_udivn@ --- *
1280 *
1281 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1282 * dividend)
1283 * @const mpw *rv, *rvl@ = dividend
1284 * @mpw d@ = single-precision divisor
1285 *
1286 * Returns: Remainder after divison.
1287 *
1288 * Use: Performs a single-precision division operation.
1289 */
1290
1291 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1292 {
1293 size_t i;
1294 size_t ql = qvl - qv;
1295 mpd r = 0;
1296
1297 i = rvl - rv;
1298 while (i > 0) {
1299 i--;
1300 r = (r << MPW_BITS) | rv[i];
1301 if (i < ql)
1302 qv[i] = r / d;
1303 r %= d;
1304 }
1305 return (MPW(r));
1306 }
1307
1308 /*----- Test rig ----------------------------------------------------------*/
1309
1310 #ifdef TEST_RIG
1311
1312 #include <mLib/alloc.h>
1313 #include <mLib/dstr.h>
1314 #include <mLib/quis.h>
1315 #include <mLib/testrig.h>
1316
1317 #include "mpscan.h"
1318
1319 #define ALLOC(v, vl, sz) do { \
1320 size_t _sz = (sz); \
1321 mpw *_vv = xmalloc(MPWS(_sz)); \
1322 mpw *_vvl = _vv + _sz; \
1323 (v) = _vv; \
1324 (vl) = _vvl; \
1325 } while (0)
1326
1327 #define LOAD(v, vl, d) do { \
1328 const dstr *_d = (d); \
1329 mpw *_v, *_vl; \
1330 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1331 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1332 (v) = _v; \
1333 (vl) = _vl; \
1334 } while (0)
1335
1336 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1337
1338 static void dumpbits(const char *msg, const void *pp, size_t sz)
1339 {
1340 const octet *p = pp;
1341 fputs(msg, stderr);
1342 for (; sz; sz--)
1343 fprintf(stderr, " %02x", *p++);
1344 fputc('\n', stderr);
1345 }
1346
1347 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1348 {
1349 fputs(msg, stderr);
1350 MPX_SHRINK(v, vl);
1351 while (v < vl)
1352 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1353 fputc('\n', stderr);
1354 }
1355
1356 static int chkscan(const mpw *v, const mpw *vl,
1357 const void *pp, size_t sz, int step)
1358 {
1359 mpscan mps;
1360 const octet *p = pp;
1361 unsigned bit = 0;
1362 int ok = 1;
1363
1364 mpscan_initx(&mps, v, vl);
1365 while (sz) {
1366 unsigned x = *p;
1367 int i;
1368 p += step;
1369 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1370 if (MPSCAN_BIT(&mps) != (x & 1)) {
1371 fprintf(stderr,
1372 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1373 step, bit, x & 1, MPSCAN_BIT(&mps));
1374 ok = 0;
1375 }
1376 x >>= 1;
1377 bit++;
1378 }
1379 sz--;
1380 }
1381
1382 return (ok);
1383 }
1384
1385 static int loadstore(dstr *v)
1386 {
1387 dstr d = DSTR_INIT;
1388 size_t sz = MPW_RQ(v->len) * 2, diff;
1389 mpw *m, *ml;
1390 int ok = 1;
1391
1392 dstr_ensure(&d, v->len);
1393 m = xmalloc(MPWS(sz));
1394
1395 for (diff = 0; diff < sz; diff += 5) {
1396 size_t oct;
1397
1398 ml = m + sz - diff;
1399
1400 mpx_loadl(m, ml, v->buf, v->len);
1401 if (!chkscan(m, ml, v->buf, v->len, +1))
1402 ok = 0;
1403 MPX_OCTETS(oct, m, ml);
1404 mpx_storel(m, ml, d.buf, d.sz);
1405 if (memcmp(d.buf, v->buf, oct) != 0) {
1406 dumpbits("\n*** storel failed", d.buf, d.sz);
1407 ok = 0;
1408 }
1409
1410 mpx_loadb(m, ml, v->buf, v->len);
1411 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1412 ok = 0;
1413 MPX_OCTETS(oct, m, ml);
1414 mpx_storeb(m, ml, d.buf, d.sz);
1415 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1416 dumpbits("\n*** storeb failed", d.buf, d.sz);
1417 ok = 0;
1418 }
1419 }
1420
1421 if (!ok)
1422 dumpbits("input data", v->buf, v->len);
1423
1424 free(m);
1425 dstr_destroy(&d);
1426 return (ok);
1427 }
1428
1429 static int twocl(dstr *v)
1430 {
1431 dstr d = DSTR_INIT;
1432 mpw *m, *ml;
1433 size_t sz;
1434 int ok = 1;
1435
1436 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1437 dstr_ensure(&d, sz);
1438
1439 sz = MPW_RQ(sz);
1440 m = xmalloc(MPWS(sz));
1441 ml = m + sz;
1442
1443 mpx_loadl(m, ml, v[0].buf, v[0].len);
1444 mpx_storel2cn(m, ml, d.buf, v[1].len);
1445 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1446 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1447 ok = 0;
1448 }
1449
1450 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1451 mpx_storel(m, ml, d.buf, v[0].len);
1452 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1453 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1454 ok = 0;
1455 }
1456
1457 if (!ok) {
1458 dumpbits("pos", v[0].buf, v[0].len);
1459 dumpbits("neg", v[1].buf, v[1].len);
1460 }
1461
1462 free(m);
1463 dstr_destroy(&d);
1464
1465 return (ok);
1466 }
1467
1468 static int twocb(dstr *v)
1469 {
1470 dstr d = DSTR_INIT;
1471 mpw *m, *ml;
1472 size_t sz;
1473 int ok = 1;
1474
1475 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1476 dstr_ensure(&d, sz);
1477
1478 sz = MPW_RQ(sz);
1479 m = xmalloc(MPWS(sz));
1480 ml = m + sz;
1481
1482 mpx_loadb(m, ml, v[0].buf, v[0].len);
1483 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1484 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1485 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1486 ok = 0;
1487 }
1488
1489 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1490 mpx_storeb(m, ml, d.buf, v[0].len);
1491 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1492 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1493 ok = 0;
1494 }
1495
1496 if (!ok) {
1497 dumpbits("pos", v[0].buf, v[0].len);
1498 dumpbits("neg", v[1].buf, v[1].len);
1499 }
1500
1501 free(m);
1502 dstr_destroy(&d);
1503
1504 return (ok);
1505 }
1506
1507 static int lsl(dstr *v)
1508 {
1509 mpw *a, *al;
1510 int n = *(int *)v[1].buf;
1511 mpw *c, *cl;
1512 mpw *d, *dl;
1513 int ok = 1;
1514
1515 LOAD(a, al, &v[0]);
1516 LOAD(c, cl, &v[2]);
1517 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1518
1519 mpx_lsl(d, dl, a, al, n);
1520 if (!mpx_ueq(d, dl, c, cl)) {
1521 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1522 dumpmp(" a", a, al);
1523 dumpmp("expected", c, cl);
1524 dumpmp(" result", d, dl);
1525 ok = 0;
1526 }
1527
1528 free(a); free(c); free(d);
1529 return (ok);
1530 }
1531
1532 static int lslc(dstr *v)
1533 {
1534 mpw *a, *al;
1535 int n = *(int *)v[1].buf;
1536 mpw *c, *cl;
1537 mpw *d, *dl;
1538 int ok = 1;
1539
1540 LOAD(a, al, &v[0]);
1541 LOAD(c, cl, &v[2]);
1542 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1543
1544 mpx_lslc(d, dl, a, al, n);
1545 if (!mpx_ueq(d, dl, c, cl)) {
1546 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1547 dumpmp(" a", a, al);
1548 dumpmp("expected", c, cl);
1549 dumpmp(" result", d, dl);
1550 ok = 0;
1551 }
1552
1553 free(a); free(c); free(d);
1554 return (ok);
1555 }
1556
1557 static int lsr(dstr *v)
1558 {
1559 mpw *a, *al;
1560 int n = *(int *)v[1].buf;
1561 mpw *c, *cl;
1562 mpw *d, *dl;
1563 int ok = 1;
1564
1565 LOAD(a, al, &v[0]);
1566 LOAD(c, cl, &v[2]);
1567 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1568
1569 mpx_lsr(d, dl, a, al, n);
1570 if (!mpx_ueq(d, dl, c, cl)) {
1571 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1572 dumpmp(" a", a, al);
1573 dumpmp("expected", c, cl);
1574 dumpmp(" result", d, dl);
1575 ok = 0;
1576 }
1577
1578 free(a); free(c); free(d);
1579 return (ok);
1580 }
1581
1582 static int uadd(dstr *v)
1583 {
1584 mpw *a, *al;
1585 mpw *b, *bl;
1586 mpw *c, *cl;
1587 mpw *d, *dl;
1588 int ok = 1;
1589
1590 LOAD(a, al, &v[0]);
1591 LOAD(b, bl, &v[1]);
1592 LOAD(c, cl, &v[2]);
1593 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1594
1595 mpx_uadd(d, dl, a, al, b, bl);
1596 if (!mpx_ueq(d, dl, c, cl)) {
1597 fprintf(stderr, "\n*** uadd failed\n");
1598 dumpmp(" a", a, al);
1599 dumpmp(" b", b, bl);
1600 dumpmp("expected", c, cl);
1601 dumpmp(" result", d, dl);
1602 ok = 0;
1603 }
1604
1605 free(a); free(b); free(c); free(d);
1606 return (ok);
1607 }
1608
1609 static int usub(dstr *v)
1610 {
1611 mpw *a, *al;
1612 mpw *b, *bl;
1613 mpw *c, *cl;
1614 mpw *d, *dl;
1615 int ok = 1;
1616
1617 LOAD(a, al, &v[0]);
1618 LOAD(b, bl, &v[1]);
1619 LOAD(c, cl, &v[2]);
1620 ALLOC(d, dl, al - a);
1621
1622 mpx_usub(d, dl, a, al, b, bl);
1623 if (!mpx_ueq(d, dl, c, cl)) {
1624 fprintf(stderr, "\n*** usub failed\n");
1625 dumpmp(" a", a, al);
1626 dumpmp(" b", b, bl);
1627 dumpmp("expected", c, cl);
1628 dumpmp(" result", d, dl);
1629 ok = 0;
1630 }
1631
1632 free(a); free(b); free(c); free(d);
1633 return (ok);
1634 }
1635
1636 static int umul(dstr *v)
1637 {
1638 mpw *a, *al;
1639 mpw *b, *bl;
1640 mpw *c, *cl;
1641 mpw *d, *dl;
1642 int ok = 1;
1643
1644 LOAD(a, al, &v[0]);
1645 LOAD(b, bl, &v[1]);
1646 LOAD(c, cl, &v[2]);
1647 ALLOC(d, dl, (al - a) + (bl - b));
1648
1649 mpx_umul(d, dl, a, al, b, bl);
1650 if (!mpx_ueq(d, dl, c, cl)) {
1651 fprintf(stderr, "\n*** umul failed\n");
1652 dumpmp(" a", a, al);
1653 dumpmp(" b", b, bl);
1654 dumpmp("expected", c, cl);
1655 dumpmp(" result", d, dl);
1656 ok = 0;
1657 }
1658
1659 free(a); free(b); free(c); free(d);
1660 return (ok);
1661 }
1662
1663 static int usqr(dstr *v)
1664 {
1665 mpw *a, *al;
1666 mpw *c, *cl;
1667 mpw *d, *dl;
1668 int ok = 1;
1669
1670 LOAD(a, al, &v[0]);
1671 LOAD(c, cl, &v[1]);
1672 ALLOC(d, dl, 2 * (al - a));
1673
1674 mpx_usqr(d, dl, a, al);
1675 if (!mpx_ueq(d, dl, c, cl)) {
1676 fprintf(stderr, "\n*** usqr failed\n");
1677 dumpmp(" a", a, al);
1678 dumpmp("expected", c, cl);
1679 dumpmp(" result", d, dl);
1680 ok = 0;
1681 }
1682
1683 free(a); free(c); free(d);
1684 return (ok);
1685 }
1686
1687 static int udiv(dstr *v)
1688 {
1689 mpw *a, *al;
1690 mpw *b, *bl;
1691 mpw *q, *ql;
1692 mpw *r, *rl;
1693 mpw *qq, *qql;
1694 mpw *s, *sl;
1695 int ok = 1;
1696
1697 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1698 LOAD(b, bl, &v[1]);
1699 LOAD(q, ql, &v[2]);
1700 LOAD(r, rl, &v[3]);
1701 ALLOC(qq, qql, al - a);
1702 ALLOC(s, sl, (bl - b) + 1);
1703
1704 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1705 if (!mpx_ueq(qq, qql, q, ql) ||
1706 !mpx_ueq(a, al, r, rl)) {
1707 fprintf(stderr, "\n*** udiv failed\n");
1708 dumpmp(" divisor", b, bl);
1709 dumpmp("expect r", r, rl);
1710 dumpmp("result r", a, al);
1711 dumpmp("expect q", q, ql);
1712 dumpmp("result q", qq, qql);
1713 ok = 0;
1714 }
1715
1716 free(a); free(b); free(r); free(q); free(s); free(qq);
1717 return (ok);
1718 }
1719
1720 static test_chunk defs[] = {
1721 { "load-store", loadstore, { &type_hex, 0 } },
1722 { "2cl", twocl, { &type_hex, &type_hex, } },
1723 { "2cb", twocb, { &type_hex, &type_hex, } },
1724 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1725 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1726 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1727 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1728 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1729 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1730 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1731 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1732 { 0, 0, { 0 } }
1733 };
1734
1735 int main(int argc, char *argv[])
1736 {
1737 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1738 return (0);
1739 }
1740
1741 #endif
1742
1743 /*----- That's all, folks -------------------------------------------------*/