Expunge revision histories in files.
[u/mdw/catacomb] / mptext.c
1 /* -*-c-*-
2 *
3 * $Id: mptext.c,v 1.18 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Textual representation of multiprecision numbers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <ctype.h>
33 #include <limits.h>
34 #include <stdio.h>
35
36 #include "mp.h"
37 #include "mptext.h"
38 #include "paranoia.h"
39
40 /*----- Magical numbers ---------------------------------------------------*/
41
42 /* --- Maximum recursion depth --- *
43 *
44 * This is the number of bits in a @size_t@ object. Why?
45 *
46 * To see this, let %$b = \textit{MPW\_MAX} + 1$% and let %$Z$% be the
47 * largest @size_t@ value. Then the largest possible @mp@ is %$M - 1$% where
48 * %$M = b^Z$%. Let %$r$% be a radix to read or write. Since the recursion
49 * squares the radix at each step, the highest number reached by the
50 * recursion is %$d$%, where:
51 *
52 * %$r^{2^d} = b^Z$%.
53 *
54 * Solving gives that %$d = \lg \log_r b^Z$%. If %$r = 2$%, this is maximum,
55 * so choosing %$d = \lg \lg b^Z = \lg (Z \lg b) = \lg Z + \lg \lg b$%.
56 *
57 * Expressing %$\lg Z$% as @CHAR_BIT * sizeof(size_t)@ yields an
58 * overestimate, since a @size_t@ representation may contain `holes'.
59 * Choosing to represent %$\lg \lg b$% by 10 is almost certainly sufficient
60 * for `some time to come'.
61 */
62
63 #define DEPTH (CHAR_BIT * sizeof(size_t) + 10)
64
65 /*----- Main code ---------------------------------------------------------*/
66
67 /* --- @mp_read@ --- *
68 *
69 * Arguments: @mp *m@ = destination multiprecision number
70 * @int radix@ = base to assume for data (or zero to guess)
71 * @const mptext_ops *ops@ = pointer to operations block
72 * @void *p@ = data for the operations block
73 *
74 * Returns: The integer read, or zero if it didn't work.
75 *
76 * Use: Reads an integer from some source. If the @radix@ is
77 * specified, the number is assumed to be given in that radix,
78 * with the letters `a' (either upper- or lower-case) upwards
79 * standing for digits greater than 9. Otherwise, base 10 is
80 * assumed unless the number starts with `0' (octal), `0x' (hex)
81 * or `nnn_' (base `nnn'). An arbitrary amount of whitespace
82 * before the number is ignored.
83 */
84
85 /* --- About the algorithm --- *
86 *
87 * The algorithm here is rather aggressive. I maintain an array of
88 * successive squarings of the radix, and a stack of partial results, each
89 * with a counter attached indicating which radix square to multiply by.
90 * Once the item at the top of the stack reaches the same counter level as
91 * the next item down, they are combined together and the result is given a
92 * counter level one higher than either of the results.
93 *
94 * Gluing the results together at the end is slightly tricky. Pay attention
95 * to the code.
96 *
97 * This is more complicated because of the need to handle the slightly
98 * bizarre syntax.
99 */
100
101 mp *mp_read(mp *m, int radix, const mptext_ops *ops, void *p)
102 {
103 int ch; /* Current char being considered */
104 unsigned f = 0; /* Flags about the current number */
105 int r; /* Radix to switch over to */
106 mpw rd; /* Radix as an @mp@ digit */
107 mp rr; /* The @mp@ for the radix */
108 unsigned nf = m ? m->f & MP_BURN : 0; /* New @mp@ flags */
109
110 /* --- Stacks --- */
111
112 mp *pow[DEPTH]; /* List of powers */
113 unsigned pows; /* Next index to fill */
114 struct { unsigned i; mp *m; } s[DEPTH]; /* Main stack */
115 unsigned sp; /* Current stack pointer */
116
117 /* --- Flags --- */
118
119 #define f_neg 1u
120 #define f_ok 2u
121 #define f_start 4u
122
123 /* --- Initialize the stacks --- */
124
125 mp_build(&rr, &rd, &rd + 1);
126 pow[0] = &rr;
127 pows = 1;
128
129 sp = 0;
130
131 /* --- Initialize the destination number --- */
132
133 if (m)
134 MP_DROP(m);
135
136 /* --- Read an initial character --- */
137
138 ch = ops->get(p);
139 while (isspace(ch))
140 ch = ops->get(p);
141
142 /* --- Handle an initial sign --- */
143
144 if (radix >= 0 && (ch == '-' || ch == '+')) {
145 if (ch == '-')
146 f |= f_neg;
147 do ch = ops->get(p); while isspace(ch);
148 }
149
150 /* --- If the radix is zero, look for leading zeros --- */
151
152 if (radix > 0) {
153 assert(((void)"ascii radix must be <= 62", radix <= 62));
154 rd = radix;
155 r = -1;
156 } else if (radix < 0) {
157 rd = -radix;
158 assert(((void)"binary radix must fit in a byte", rd < UCHAR_MAX));
159 r = -1;
160 } else if (ch != '0') {
161 rd = 10;
162 r = 0;
163 } else {
164 ch = ops->get(p);
165 switch (ch) {
166 case 'x':
167 rd = 16;
168 goto prefix;
169 case 'o':
170 rd = 8;
171 goto prefix;
172 case 'b':
173 rd = 2;
174 goto prefix;
175 prefix:
176 ch = ops->get(p);
177 break;
178 default:
179 rd = 8;
180 f |= f_ok;
181 }
182 r = -1;
183 }
184
185 /* --- Use fast algorithm for binary radix --- *
186 *
187 * This is the restart point after having parsed a radix number from the
188 * input. We check whether the radix is binary, and if so use a fast
189 * algorithm which just stacks the bits up in the right order.
190 */
191
192 restart:
193 switch (rd) {
194 unsigned bit;
195
196 case 2: bit = 1; goto bin;
197 case 4: bit = 2; goto bin;
198 case 8: bit = 3; goto bin;
199 case 16: bit = 4; goto bin;
200 case 32: bit = 5; goto bin;
201 case 64: bit = 6; goto bin;
202 case 128: bit = 7; goto bin;
203 default:
204 break;
205
206 /* --- The fast binary algorithm --- *
207 *
208 * We stack bits up starting at the top end of a word. When one word is
209 * full, we write it to the integer, and start another with the left-over
210 * bits. When the array in the integer is full, we resize using low-level
211 * calls and copy the current data to the top end. Finally, we do a single
212 * bit-shift when we know where the end of the number is.
213 */
214
215 bin: {
216 mpw a = 0;
217 unsigned b = MPW_BITS;
218 size_t len, n;
219 mpw *v;
220
221 m = mp_dest(MP_NEW, 1, nf);
222 len = n = m->sz;
223 n = len;
224 v = m->v + n;
225 for (;; ch = ops->get(p)) {
226 unsigned x;
227
228 if (ch < 0)
229 break;
230
231 /* --- Check that the character is a digit and in range --- */
232
233 if (radix < 0)
234 x = ch % rd;
235 else {
236 if (!isalnum(ch))
237 break;
238 if (ch >= '0' && ch <= '9')
239 x = ch - '0';
240 else {
241 if (rd <= 36)
242 ch = tolower(ch);
243 if (ch >= 'a' && ch <= 'z') /* ASCII dependent! */
244 x = ch - 'a' + 10;
245 else if (ch >= 'A' && ch <= 'Z')
246 x = ch - 'A' + 36;
247 else
248 break;
249 }
250 }
251 if (x >= rd)
252 break;
253
254 /* --- Feed the digit into the accumulator --- */
255
256 f |= f_ok;
257 if (!x && !(f & f_start))
258 continue;
259 f |= f_start;
260 if (b > bit) {
261 b -= bit;
262 a |= MPW(x) << b;
263 } else {
264 a |= MPW(x) >> (bit - b);
265 b += MPW_BITS - bit;
266 *--v = MPW(a);
267 n--;
268 if (!n) {
269 n = len;
270 len <<= 1;
271 v = mpalloc(m->a, len);
272 memcpy(v + n, m->v, MPWS(n));
273 mpfree(m->a, m->v);
274 m->v = v;
275 v = m->v + n;
276 }
277 a = (b < MPW_BITS) ? MPW(x) << b : 0;
278 }
279 }
280
281 /* --- Finish up --- */
282
283 if (!(f & f_ok)) {
284 mp_drop(m);
285 m = 0;
286 } else {
287 *--v = MPW(a);
288 n--;
289 m->sz = len;
290 m->vl = m->v + len;
291 m->f &= ~MP_UNDEF;
292 m = mp_lsr(m, m, (unsigned long)n * MPW_BITS + b);
293 }
294 ops->unget(ch, p);
295 goto done;
296 }}
297
298 /* --- Time to start --- */
299
300 for (;; ch = ops->get(p)) {
301 unsigned x;
302
303 if (ch < 0)
304 break;
305
306 /* --- An underscore indicates a numbered base --- */
307
308 if (ch == '_' && r > 0 && r <= 62) {
309 unsigned i;
310
311 /* --- Clear out the stacks --- */
312
313 for (i = 1; i < pows; i++)
314 MP_DROP(pow[i]);
315 pows = 1;
316 for (i = 0; i < sp; i++)
317 MP_DROP(s[i].m);
318 sp = 0;
319
320 /* --- Restart the search --- */
321
322 rd = r;
323 r = -1;
324 f &= ~f_ok;
325 ch = ops->get(p);
326 goto restart;
327 }
328
329 /* --- Check that the character is a digit and in range --- */
330
331 if (radix < 0)
332 x = ch % rd;
333 else {
334 if (!isalnum(ch))
335 break;
336 if (ch >= '0' && ch <= '9')
337 x = ch - '0';
338 else {
339 if (rd <= 36)
340 ch = tolower(ch);
341 if (ch >= 'a' && ch <= 'z') /* ASCII dependent! */
342 x = ch - 'a' + 10;
343 else if (ch >= 'A' && ch <= 'Z')
344 x = ch - 'A' + 36;
345 else
346 break;
347 }
348 }
349
350 /* --- Sort out what to do with the character --- */
351
352 if (x >= 10 && r >= 0)
353 r = -1;
354 if (x >= rd)
355 break;
356
357 if (r >= 0)
358 r = r * 10 + x;
359
360 /* --- Stick the character on the end of my integer --- */
361
362 assert(((void)"Number is too unimaginably huge", sp < DEPTH));
363 s[sp].m = m = mp_new(1, nf);
364 m->v[0] = x;
365 s[sp].i = 0;
366
367 /* --- Now grind through the stack --- */
368
369 while (sp > 0 && s[sp - 1].i == s[sp].i) {
370
371 /* --- Combine the top two items --- */
372
373 sp--;
374 m = s[sp].m;
375 m = mp_mul(m, m, pow[s[sp].i]);
376 m = mp_add(m, m, s[sp + 1].m);
377 s[sp].m = m;
378 MP_DROP(s[sp + 1].m);
379 s[sp].i++;
380
381 /* --- Make a new radix power if necessary --- */
382
383 if (s[sp].i >= pows) {
384 assert(((void)"Number is too unimaginably huge", pows < DEPTH));
385 pow[pows] = mp_sqr(MP_NEW, pow[pows - 1]);
386 pows++;
387 }
388 }
389 f |= f_ok;
390 sp++;
391 }
392
393 ops->unget(ch, p);
394
395 /* --- If we're done, compute the rest of the number --- */
396
397 if (f & f_ok) {
398 if (!sp)
399 return (MP_ZERO);
400 else {
401 mp *z = MP_ONE;
402 sp--;
403
404 while (sp > 0) {
405
406 /* --- Combine the top two items --- */
407
408 sp--;
409 m = s[sp].m;
410 z = mp_mul(z, z, pow[s[sp + 1].i]);
411 m = mp_mul(m, m, z);
412 m = mp_add(m, m, s[sp + 1].m);
413 s[sp].m = m;
414 MP_DROP(s[sp + 1].m);
415
416 /* --- Make a new radix power if necessary --- */
417
418 if (s[sp].i >= pows) {
419 assert(((void)"Number is too unimaginably huge", pows < DEPTH));
420 pow[pows] = mp_sqr(MP_NEW, pow[pows - 1]);
421 pows++;
422 }
423 }
424 MP_DROP(z);
425 m = s[0].m;
426 }
427 } else {
428 unsigned i;
429 for (i = 0; i < sp; i++)
430 MP_DROP(s[i].m);
431 }
432
433 /* --- Clear the radix power list --- */
434
435 {
436 unsigned i;
437 for (i = 1; i < pows; i++)
438 MP_DROP(pow[i]);
439 }
440
441 /* --- Bail out if the number was bad --- */
442
443 done:
444 if (!(f & f_ok))
445 return (0);
446
447 /* --- Set the sign and return --- */
448
449 if (f & f_neg)
450 m->f |= MP_NEG;
451 MP_SHRINK(m);
452 return (m);
453
454 #undef f_start
455 #undef f_neg
456 #undef f_ok
457 }
458
459 /* --- @mp_write@ --- *
460 *
461 * Arguments: @mp *m@ = pointer to a multi-precision integer
462 * @int radix@ = radix to use when writing the number out
463 * @const mptext_ops *ops@ = pointer to an operations block
464 * @void *p@ = data for the operations block
465 *
466 * Returns: Zero if it worked, nonzero otherwise.
467 *
468 * Use: Writes a large integer in textual form.
469 */
470
471 /* --- Simple case --- *
472 *
473 * Use a fixed-sized buffer and single-precision arithmetic to pick off
474 * low-order digits. Put each digit in a buffer, working backwards from the
475 * end. If the buffer becomes full, recurse to get another one. Ensure that
476 * there are at least @z@ digits by writing leading zeroes if there aren't
477 * enough real digits.
478 */
479
480 static int simple(mpw n, int radix, unsigned z,
481 const mptext_ops *ops, void *p)
482 {
483 int rc = 0;
484 char buf[64];
485 unsigned i = sizeof(buf);
486 int rd = radix > 0 ? radix : -radix;
487
488 do {
489 int ch;
490 mpw x;
491
492 x = n % rd;
493 n /= rd;
494 if (radix < 0)
495 ch = x;
496 else if (x < 10)
497 ch = '0' + x;
498 else if (x < 36) /* Ascii specific */
499 ch = 'a' + x - 10;
500 else
501 ch = 'A' + x - 36;
502 buf[--i] = ch;
503 if (z)
504 z--;
505 } while (i && n);
506
507 if (n)
508 rc = simple(n, radix, z, ops, p);
509 else {
510 char zbuf[32];
511 memset(zbuf, (radix < 0) ? 0 : '0', sizeof(zbuf));
512 while (!rc && z >= sizeof(zbuf)) {
513 rc = ops->put(zbuf, sizeof(zbuf), p);
514 z -= sizeof(zbuf);
515 }
516 if (!rc && z)
517 rc = ops->put(zbuf, z, p);
518 }
519 if (!rc)
520 rc = ops->put(buf + i, sizeof(buf) - i, p);
521 BURN(buf);
522 return (rc);
523 }
524
525 /* --- Complicated case --- *
526 *
527 * If the number is small, fall back to the simple case above. Otherwise
528 * divide and take remainder by current large power of the radix, and emit
529 * each separately. Don't emit a zero quotient. Be very careful about
530 * leading zeroes on the remainder part, because they're deeply significant.
531 */
532
533 static int complicated(mp *m, int radix, mp **pr, unsigned i, unsigned z,
534 const mptext_ops *ops, void *p)
535 {
536 int rc = 0;
537 mp *q = MP_NEW;
538 unsigned d = 1 << i;
539
540 if (MP_LEN(m) < 2)
541 return (simple(MP_LEN(m) ? m->v[0] : 0, radix, z, ops, p));
542
543 assert(i);
544 mp_div(&q, &m, m, pr[i]);
545 if (!MP_LEN(q))
546 d = z;
547 else {
548 if (z > d)
549 z -= d;
550 else
551 z = 0;
552 rc = complicated(q, radix, pr, i - 1, z, ops, p);
553 }
554 if (!rc)
555 rc = complicated(m, radix, pr, i - 1, d, ops, p);
556 mp_drop(q);
557 return (rc);
558 }
559
560 /* --- Binary case --- *
561 *
562 * Special case for binary output. Goes much faster.
563 */
564
565 static int binary(mp *m, int bit, int radix, const mptext_ops *ops, void *p)
566 {
567 mpw *v;
568 mpw a;
569 int rc = 0;
570 unsigned b;
571 unsigned mask;
572 unsigned long n;
573 unsigned f = 0;
574 char buf[8], *q;
575 unsigned x;
576 int ch;
577
578 #define f_out 1u
579
580 /* --- Work out where to start --- */
581
582 n = mp_bits(m);
583 if (n % bit)
584 n += bit - (n % bit);
585 b = n % MPW_BITS;
586 n /= MPW_BITS;
587
588 if (n >= MP_LEN(m)) {
589 n--;
590 b += MPW_BITS;
591 }
592
593 v = m->v + n;
594 a = *v;
595 mask = (1 << bit) - 1;
596 q = buf;
597
598 /* --- Main code --- */
599
600 for (;;) {
601 if (b > bit) {
602 b -= bit;
603 x = a >> b;
604 } else {
605 x = a << (bit - b);
606 b += MPW_BITS - bit;
607 if (v == m->v)
608 break;
609 a = *--v;
610 if (b < MPW_BITS)
611 x |= a >> b;
612 }
613 x &= mask;
614 if (!x && !(f & f_out))
615 continue;
616
617 if (radix < 0)
618 ch = x;
619 else if (x < 10)
620 ch = '0' + x;
621 else if (x < 36)
622 ch = 'a' + x - 10; /* Ascii specific */
623 else
624 ch = 'A' + x - 36;
625 *q++ = ch;
626 if (q >= buf + sizeof(buf)) {
627 if ((rc = ops->put(buf, sizeof(buf), p)) != 0)
628 goto done;
629 q = buf;
630 }
631 f |= f_out;
632 }
633
634 x &= mask;
635 if (radix < 0)
636 ch = x;
637 else if (x < 10)
638 ch = '0' + x;
639 else if (x < 36)
640 ch = 'a' + x - 10; /* Ascii specific */
641 else
642 ch = 'A' + x - 36;
643 *q++ = ch;
644 rc = ops->put(buf, q - buf, p);
645
646 done:
647 mp_drop(m);
648 return (rc);
649
650 #undef f_out
651 }
652
653 /* --- Main driver code --- */
654
655 int mp_write(mp *m, int radix, const mptext_ops *ops, void *p)
656 {
657 int rc;
658
659 if (MP_EQ(m, MP_ZERO))
660 return (ops->put("0", 1, p));
661
662 /* --- Set various things up --- */
663
664 m = MP_COPY(m);
665 MP_SPLIT(m);
666
667 /* --- Check the radix for sensibleness --- */
668
669 if (radix > 0)
670 assert(((void)"ascii radix must be <= 62", radix <= 62));
671 else if (radix < 0)
672 assert(((void)"binary radix must fit in a byte", -radix < UCHAR_MAX));
673 else
674 assert(((void)"radix can't be zero in mp_write", 0));
675
676 /* --- If the number is negative, sort that out --- */
677
678 if (m->f & MP_NEG) {
679 if (ops->put("-", 1, p))
680 return (EOF);
681 m->f &= ~MP_NEG;
682 }
683
684 /* --- Handle binary radix --- */
685
686 switch (radix) {
687 case 2: case -2: return (binary(m, 1, radix, ops, p));
688 case 4: case -4: return (binary(m, 2, radix, ops, p));
689 case 8: case -8: return (binary(m, 3, radix, ops, p));
690 case 16: case -16: return (binary(m, 4, radix, ops, p));
691 case 32: case -32: return (binary(m, 5, radix, ops, p));
692 case -64: return (binary(m, 6, radix, ops, p));
693 case -128: return (binary(m, 7, radix, ops, p));
694 }
695
696 /* --- If the number is small, do it the easy way --- */
697
698 if (MP_LEN(m) < 2)
699 rc = simple(MP_LEN(m) ? m->v[0] : 0, radix, 0, ops, p);
700
701 /* --- Use a clever algorithm --- *
702 *
703 * Square the radix repeatedly, remembering old results, until I get
704 * something more than half the size of the number @m@. Use this to divide
705 * the number: the quotient and remainder will be approximately the same
706 * size, and I'll have split them on a digit boundary, so I can just emit
707 * the quotient and remainder recursively, in order.
708 */
709
710 else {
711 mp *pr[DEPTH];
712 size_t target = (MP_LEN(m) + 1) / 2;
713 unsigned i = 0;
714 mp *z = mp_new(1, 0);
715
716 /* --- Set up the exponent table --- */
717
718 z->v[0] = (radix > 0 ? radix : -radix);
719 z->f = 0;
720 for (;;) {
721 assert(((void)"Number is too unimaginably huge", i < DEPTH));
722 pr[i++] = z;
723 if (MP_LEN(z) > target)
724 break;
725 z = mp_sqr(MP_NEW, z);
726 }
727
728 /* --- Write out the answer --- */
729
730 rc = complicated(m, radix, pr, i - 1, 0, ops, p);
731
732 /* --- Tidy away the array --- */
733
734 while (i > 0)
735 mp_drop(pr[--i]);
736 }
737
738 /* --- Tidying up code --- */
739
740 MP_DROP(m);
741 return (rc);
742 }
743
744 /*----- Test rig ----------------------------------------------------------*/
745
746 #ifdef TEST_RIG
747
748 #include <mLib/testrig.h>
749
750 static int verify(dstr *v)
751 {
752 int ok = 1;
753 int ib = *(int *)v[0].buf, ob = *(int *)v[2].buf;
754 dstr d = DSTR_INIT;
755 size_t off = 0;
756 mp *m = mp_readdstr(MP_NEW, &v[1], &off, ib);
757 if (m) {
758 if (!ob) {
759 fprintf(stderr, "*** unexpected successful parse\n"
760 "*** input [%2i] = ", ib);
761 if (ib < 0)
762 type_hex.dump(&v[1], stderr);
763 else
764 fputs(v[1].buf, stderr);
765 mp_writedstr(m, &d, 10);
766 fprintf(stderr, "\n*** (value = %s)\n", d.buf);
767 ok = 0;
768 } else {
769 mp_writedstr(m, &d, ob);
770 if (d.len != v[3].len || memcmp(d.buf, v[3].buf, d.len) != 0) {
771 fprintf(stderr, "*** failed read or write\n"
772 "*** input [%2i] = ", ib);
773 if (ib < 0)
774 type_hex.dump(&v[1], stderr);
775 else
776 fputs(v[1].buf, stderr);
777 fprintf(stderr, "\n*** output [%2i] = ", ob);
778 if (ob < 0)
779 type_hex.dump(&d, stderr);
780 else
781 fputs(d.buf, stderr);
782 fprintf(stderr, "\n*** expected [%2i] = ", ob);
783 if (ob < 0)
784 type_hex.dump(&v[3], stderr);
785 else
786 fputs(v[3].buf, stderr);
787 fputc('\n', stderr);
788 ok = 0;
789 }
790 }
791 mp_drop(m);
792 } else {
793 if (ob) {
794 fprintf(stderr, "*** unexpected parse failure\n"
795 "*** input [%2i] = ", ib);
796 if (ib < 0)
797 type_hex.dump(&v[1], stderr);
798 else
799 fputs(v[1].buf, stderr);
800 fprintf(stderr, "\n*** expected [%2i] = ", ob);
801 if (ob < 0)
802 type_hex.dump(&v[3], stderr);
803 else
804 fputs(v[3].buf, stderr);
805 fputc('\n', stderr);
806 ok = 0;
807 }
808 }
809
810 if (v[1].len - off != v[4].len ||
811 memcmp(v[1].buf + off, v[4].buf, v[4].len) != 0) {
812 fprintf(stderr, "*** leftovers incorrect\n"
813 "*** input [%2i] = ", ib);
814 if (ib < 0)
815 type_hex.dump(&v[1], stderr);
816 else
817 fputs(v[1].buf, stderr);
818 fprintf(stderr, "\n*** expected `%s'\n"
819 "*** found `%s'\n",
820 v[4].buf, v[1].buf + off);
821 ok = 0;
822 }
823
824 dstr_destroy(&d);
825 assert(mparena_count(MPARENA_GLOBAL) == 0);
826 return (ok);
827 }
828
829 static test_chunk tests[] = {
830 { "mptext-ascii", verify,
831 { &type_int, &type_string, &type_int, &type_string, &type_string, 0 } },
832 { "mptext-bin-in", verify,
833 { &type_int, &type_hex, &type_int, &type_string, &type_string, 0 } },
834 { "mptext-bin-out", verify,
835 { &type_int, &type_string, &type_int, &type_hex, &type_string, 0 } },
836 { 0, 0, { 0 } }
837 };
838
839 int main(int argc, char *argv[])
840 {
841 sub_init();
842 test_run(argc, argv, tests, SRCDIR "/tests/mptext");
843 return (0);
844 }
845
846 #endif
847
848 /*----- That's all, folks -------------------------------------------------*/