Compute square roots in a prime field.
[u/mdw/catacomb] / mp-modsqrt.c
1 /* -*-c-*-
2 *
3 * $Id: mp-modsqrt.c,v 1.1 2000/06/22 19:01:31 mdw Exp $
4 *
5 * Compute square roots modulo a prime
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mp-modsqrt.c,v $
33 * Revision 1.1 2000/06/22 19:01:31 mdw
34 * Compute square roots in a prime field.
35 *
36 */
37
38 /*----- Header files ------------------------------------------------------*/
39
40 #include "fibrand.h"
41 #include "grand.h"
42 #include "mp.h"
43 #include "mpmont.h"
44 #include "mprand.h"
45
46 /*----- Main code ---------------------------------------------------------*/
47
48 /* --- @mp_modsqrt@ --- *
49 *
50 * Arguments: @mp *d@ = destination integer
51 * @mp *a@ = source integer
52 * @mp *p@ = modulus (must be prime)
53 *
54 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
55 * a null pointer.
56 *
57 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
58 * if one exists; else a null pointer. This function will not
59 * work if %$p$% is composite: you must factor the modulus, take
60 * a square root mod each factor, and recombine the results
61 * using the Chinese Remainder Theorem.
62 */
63
64 mp *mp_modsqrt(mp *d, mp *a, mp *p)
65 {
66 mpmont mm;
67 mp *t;
68 size_t s;
69 mp *b;
70 mp *ainv;
71 mp *c, *r;
72 size_t i, j;
73 mp *dd, *mone;
74
75 /* --- Cope if %$a \not\in Q_p$% --- */
76
77 if (mp_jacobi(a, p) != 1) {
78 if (d)
79 mp_drop(d);
80 return (0);
81 }
82
83 /* --- Choose some quadratic non-residue --- */
84
85 {
86 grand *g = fibrand_create(0);
87
88 b = MP_NEW;
89 do
90 b = mprand_range(b, p, g, 0);
91 while (mp_jacobi(b, p) != -1);
92 g->ops->destroy(g);
93 }
94
95 /* --- Find the inverse of %$a$% --- */
96
97 ainv = MP_NEW;
98 mp_gcd(0, &ainv, 0, a, p);
99
100 /* --- Split %$p - 1$% into a power of two and an odd number --- */
101
102 t = mp_sub(MP_NEW, p, MP_ONE);
103 t = mp_odd(t, t, &s);
104
105 /* --- Now to really get going --- */
106
107 mpmont_create(&mm, p);
108 c = mpmont_expr(&mm, b, b, t);
109 t = mp_add(t, t, MP_ONE);
110 t = mp_lsr(t, t, 1);
111 r = mpmont_expr(&mm, t, a, t);
112 ainv = mpmont_mul(&mm, ainv, ainv, mm.r2);
113
114 mone = mp_sub(MP_NEW, p, mm.r);
115
116 dd = MP_NEW;
117
118 for (i = 1; i < s; i++) {
119
120 /* --- Compute %$d_0 = r^2a^{-1}$% --- */
121
122 dd = mp_sqr(dd, r);
123 dd = mpmont_reduce(&mm, dd, dd);
124 dd = mpmont_mul(&mm, dd, dd, ainv);
125
126 /* --- Now %$d = d_0^{s - i - 1}$% --- */
127
128 for (j = i; j < s - 1; j++) {
129 dd = mp_sqr(dd, dd);
130 dd = mpmont_reduce(&mm, dd, dd);
131 }
132
133 /* --- Fiddle at the end --- */
134
135 if (MP_CMP(dd, ==, mone))
136 r = mpmont_mul(&mm, r, r, c);
137 c = mp_sqr(c, c);
138 c = mpmont_reduce(&mm, c, c);
139 }
140
141 /* --- Done, so tidy up --- */
142
143 d = mpmont_reduce(&mm, d, r);
144 mp_drop(ainv);
145 mp_drop(r); mp_drop(c);
146 if (dd)
147 mp_drop(dd);
148 mp_drop(mone);
149 mpmont_destroy(&mm);
150
151 return (d);
152 }
153
154 /*----- Test rig ----------------------------------------------------------*/
155
156 #ifdef TEST_RIG
157
158 #include <mLib/testrig.h>
159
160 static int verify(dstr *v)
161 {
162 mp *a = *(mp **)v[0].buf;
163 mp *p = *(mp **)v[1].buf;
164 mp *rr = *(mp **)v[2].buf;
165 mp *r = mp_modsqrt(MP_NEW, a, p);
166 int ok = 0;
167
168 if (!r)
169 ok = 0;
170 else if (MP_CMP(r, ==, rr))
171 ok = 1;
172 else {
173 r = mp_sub(r, p, r);
174 if (MP_CMP(r, ==, rr))
175 ok = 1;
176 }
177
178 if (!ok) {
179 fputs("\n*** fail\n", stderr);
180 fputs("a = ", stderr); mp_writefile(a, stderr, 10); fputc('\n', stderr);
181 fputs("p = ", stderr); mp_writefile(p, stderr, 10); fputc('\n', stderr);
182 if (r) {
183 fputs("r = ", stderr);
184 mp_writefile(r, stderr, 10);
185 fputc('\n', stderr);
186 } else
187 fputs("r = <undef>\n", stderr);
188 fputs("rr = ", stderr); mp_writefile(rr, stderr, 10); fputc('\n', stderr);
189 ok = 0;
190 }
191
192 mp_drop(a);
193 mp_drop(p);
194 if (r)
195 mp_drop(r);
196 mp_drop(rr);
197 assert(mparena_count(MPARENA_GLOBAL) == 0);
198 return (ok);
199 }
200
201 static test_chunk tests[] = {
202 { "modsqrt", verify, { &type_mp, &type_mp, &type_mp, 0 } },
203 { 0, 0, { 0 } }
204 };
205
206 int main(int argc, char *argv[])
207 {
208 sub_init();
209 test_run(argc, argv, tests, SRCDIR "/tests/mp");
210 return (0);
211 }
212
213 #endif
214
215 /*----- That's all, folks -------------------------------------------------*/