tiger-mktab.c: Don't have printf swallow a kludge64 whole.
[u/mdw/catacomb] / dsarand.c
1 /* -*-c-*-
2 *
3 * $Id: dsarand.c,v 1.4 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Random number generator for DSA
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <stdarg.h>
33 #include <string.h>
34
35 #include <mLib/alloc.h>
36 #include <mLib/bits.h>
37 #include <mLib/sub.h>
38
39 #include "dsarand.h"
40 #include "grand.h"
41 #include "sha.h"
42
43 /*----- Main code ---------------------------------------------------------*/
44
45 /* --- @STEP@ --- *
46 *
47 * Arguments: @dsarand *d@ = pointer to context
48 *
49 * Use: Increments the buffer by one, interpreting it as a big-endian
50 * integer. Carries outside the integer are discarded.
51 */
52
53 #define STEP(d) do { \
54 dsarand *_d = (d); \
55 octet *_p = _d->p; \
56 octet *_q = _p + _d->sz; \
57 unsigned _c = 1; \
58 while (_c && _q > _p) { \
59 _c += *--_q; \
60 *_q = U8(_c); \
61 _c >>= 8; \
62 } \
63 } while (0)
64
65 /* --- @dsarand_init@ --- *
66 *
67 * Arguments: @dsarand *d@ = pointer to context
68 * @const void *p@ = pointer to seed buffer
69 * @size_t sz@ = size of the buffer
70 *
71 * Returns: ---
72 *
73 * Use: Initializes a DSA random number generator.
74 */
75
76 void dsarand_init(dsarand *d, const void *p, size_t sz)
77 {
78 d->p = xmalloc(sz);
79 d->sz = sz;
80 d->passes = 1;
81 if (p)
82 memcpy(d->p, p, sz);
83 }
84
85 /* --- @dsarand_reseed@ --- *
86 *
87 * Arguments: @dsarand *d@ = pointer to context
88 * @const void *p@ = pointer to seed buffer
89 * @size_t sz@ = size of the buffer
90 *
91 * Returns: ---
92 *
93 * Use: Initializes a DSA random number generator.
94 */
95
96 void dsarand_reseed(dsarand *d, const void *p, size_t sz)
97 {
98 xfree(d->p);
99 d->p = xmalloc(sz);
100 d->sz = sz;
101 d->passes = 1;
102 if (p)
103 memcpy(d->p, p, sz);
104 }
105
106 /* --- @dsarand_destroy@ --- *
107 *
108 * Arguments: @dsarand *d@ = pointer to context
109 *
110 * Returns: ---
111 *
112 * Use: Disposes of a DSA random number generation context.
113 */
114
115 void dsarand_destroy(dsarand *d)
116 {
117 xfree(d->p);
118 }
119
120 /* --- @dsarand_fill@ --- *
121 *
122 * Arguments: @dsarand *d@ = pointer to context
123 * @void *p@ = pointer to output buffer
124 * @size_t sz@ = size of output buffer
125 *
126 * Returns: ---
127 *
128 * Use: Fills an output buffer with pseudorandom data.
129 *
130 * Let %$p$% be the numerical value of the input buffer, and let
131 * %$b$% be the number of bytes required. Let
132 * %$z = \lceil b / 20 \rceil$% be the number of SHA outputs
133 * required. Then the output of pass %$n$% is
134 *
135 * %$P_n = \sum_{0 \le i < z} 2^{160i} SHA(p + nz + i)$%
136 * %${} \bmod 2^{8b}$%
137 *
138 * and the actual result in the output buffer is the XOR of all
139 * of the output passes.
140 *
141 * The DSA procedure for choosing @q@ involves two passes with
142 * %$z = 1$%; the procedure for choosing @p@ involves one pass
143 * with larger %$z$%. This generalization of the DSA generation
144 * procedure is my own invention but it seems relatively sound.
145 */
146
147 void dsarand_fill(dsarand *d, void *p, size_t sz)
148 {
149 octet *q = p;
150 unsigned n = d->passes;
151
152 /* --- Write out the first pass --- *
153 *
154 * This can write directly to the output buffer, so it's done differently
155 * from the latter passes.
156 */
157
158 {
159 size_t o = sz;
160
161 while (o) {
162 sha_ctx h;
163
164 /* --- Hash the input buffer --- */
165
166 sha_init(&h);
167 sha_hash(&h, d->p, d->sz);
168
169 /* --- If enough space, extract the hash output directly --- */
170
171 if (o >= SHA_HASHSZ) {
172 o -= SHA_HASHSZ;
173 sha_done(&h, q + o);
174 }
175
176 /* --- Otherwise take the hash result out of line and copy it --- */
177
178 else {
179 octet hash[SHA_HASHSZ];
180 sha_done(&h, hash);
181 memcpy(q, hash + (SHA_HASHSZ - o), o);
182 o = 0;
183 }
184
185 /* --- Step the input buffer --- */
186
187 STEP(d);
188 }
189
190 /* --- Another pass has been done --- */
191
192 n--;
193 }
194
195 /* --- Write out subsequent passes --- *
196 *
197 * The hash output has to be done offline, so this is slightly easier.
198 */
199
200 while (n) {
201 size_t o = sz;
202
203 while (o) {
204 sha_ctx h;
205 octet hash[SHA_HASHSZ];
206 size_t n;
207 octet *pp, *qq;
208
209 /* --- Hash the input buffer --- */
210
211 sha_init(&h);
212 sha_hash(&h, d->p, d->sz);
213 sha_done(&h, hash);
214
215 /* --- Work out how much output is wanted --- */
216
217 n = SHA_HASHSZ;
218 if (n > o)
219 n = o;
220 o -= n;
221
222 /* --- XOR the data out --- */
223
224 for (pp = hash + (SHA_HASHSZ - n), qq = q + o;
225 pp < hash + SHA_HASHSZ; pp++, qq++)
226 *qq ^= *pp;
227
228 /* --- Step the input buffer --- */
229
230 STEP(d);
231 }
232
233 /* --- Another pass is done --- */
234
235 n--;
236 }
237 }
238
239 /*----- Generic pseudorandom-number generator interface -------------------*/
240
241 static const grand_ops gops;
242
243 typedef struct gctx {
244 grand r;
245 dsarand d;
246 } gctx;
247
248 static void gdestroy(grand *r)
249 {
250 gctx *g = (gctx *)r;
251 dsarand_destroy(&g->d);
252 DESTROY(g);
253 }
254
255 static int gmisc(grand *r, unsigned op, ...)
256 {
257 gctx *g = (gctx *)r;
258 va_list ap;
259 int rc = 0;
260 va_start(ap, op);
261
262 switch (op) {
263 case GRAND_CHECK:
264 switch (va_arg(ap, unsigned)) {
265 case GRAND_CHECK:
266 case GRAND_SEEDBLOCK:
267 case GRAND_SEEDRAND:
268 case DSARAND_PASSES:
269 case DSARAND_SEEDSZ:
270 case DSARAND_GETSEED:
271 rc = 1;
272 break;
273 default:
274 rc = 0;
275 break;
276 }
277 break;
278 case GRAND_SEEDBLOCK: {
279 const void *p = va_arg(ap, const void *);
280 size_t sz = va_arg(ap, size_t);
281 dsarand_reseed(&g->d, p, sz);
282 } break;
283 case GRAND_SEEDRAND: {
284 grand *rr = va_arg(ap, grand *);
285 rr->ops->fill(rr, g->d.p, g->d.sz);
286 } break;
287 case DSARAND_PASSES:
288 g->d.passes = va_arg(ap, unsigned);
289 break;
290 case DSARAND_SEEDSZ:
291 rc = g->d.sz;
292 break;
293 case DSARAND_GETSEED:
294 memcpy(va_arg(ap, void *), g->d.p, g->d.sz);
295 break;
296 default:
297 GRAND_BADOP;
298 break;
299 }
300
301 va_end(ap);
302 return (rc);
303 }
304
305 static void gfill(grand *r, void *p, size_t sz)
306 {
307 gctx *g = (gctx *)r;
308 dsarand_fill(&g->d, p, sz);
309 }
310
311 static const grand_ops gops = {
312 "dsarand",
313 0, 0,
314 gmisc, gdestroy,
315 grand_word, grand_byte, grand_word, grand_range, gfill
316 };
317
318 /* --- @dsarand_create@ --- *
319 *
320 * Arguments: @const void *p@ = pointer to seed buffer
321 * @size_t sz@ = size of seed buffer
322 *
323 * Returns: Pointer to a generic generator.
324 *
325 * Use: Constructs a generic generator interface over a Catacomb
326 * entropy pool generator.
327 */
328
329 grand *dsarand_create(const void *p, size_t sz)
330 {
331 gctx *g = CREATE(gctx);
332 g->r.ops = &gops;
333 dsarand_init(&g->d, p, sz);
334 return (&g->r);
335 }
336
337 /*----- That's all, folks -------------------------------------------------*/