7544e70b004a33d9020c9e5a1e29e0aa135e7b94
[u/mdw/catacomb] / mpmont.h
1 /* -*-c-*-
2 *
3 * $Id: mpmont.h,v 1.5 2001/06/16 13:00:04 mdw Exp $
4 *
5 * Montgomery reduction
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpmont.h,v $
33 * Revision 1.5 2001/06/16 13:00:04 mdw
34 * Moved @mpmont_factor@ to <mp.h>. Documented interface change to
35 * @mpmont_expr@ and @mpmont_mexpr@ -- the arguments are now in Montgomery
36 * form.
37 *
38 * Revision 1.4 1999/12/11 01:51:14 mdw
39 * Use a Karatsuba-based reduction for large moduli.
40 *
41 * Revision 1.3 1999/12/10 23:29:48 mdw
42 * Change header file guard names.
43 *
44 * Revision 1.2 1999/11/19 13:17:43 mdw
45 * Add extra interface to exponentiation which returns a Montgomerized
46 * result. Add simultaneous exponentiation interface.
47 *
48 * Revision 1.1 1999/11/17 18:02:16 mdw
49 * New multiprecision integer arithmetic suite.
50 *
51 */
52
53 #ifndef CATACOMB_MPMONT_H
54 #define CATACOMB_MPMONT_H
55
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59
60 /*----- Header files ------------------------------------------------------*/
61
62 #ifndef CATACOMB_MP_H
63 # include "mp.h"
64 #endif
65
66 /*----- Notes on Montgomery reduction -------------------------------------*
67 *
68 * Given a little bit of precomputation, Montgomery reduction enables modular
69 * reductions of products to be calculated rather rapidly, without recourse
70 * to annoying things like division.
71 *
72 * Before starting, you need to do a little work. In particular, the
73 * following things need to be worked out:
74 *
75 * * %$m$%, which is the modulus you'll be working with. This must be odd,
76 * otherwise the whole thing doesn't work. You're better off using
77 * Barrett reduction if your modulus might be even.
78 *
79 * * %$b$%, the radix of the number system you're in (here, it's
80 * @MPW_MAX + 1@).
81 *
82 * * %$-m^{-1} \bmod b$%, a useful number for the reduction step. (This
83 * means that the modulus mustn't be even. This shouldn't be a problem.)
84 *
85 * * %$R = b^n > m > b^{n - 1}$%, or at least %$\log_2 R$%.
86 *
87 * * %$R \bmod m$% and %$R^2 \bmod m$%, which are useful when doing
88 * calculations such as exponentiation.
89 *
90 * The result of a Montgomery reduction of %$x$% is %$x R^{-1} \bmod m$%,
91 * which doesn't look ever-so useful. The trick is to initially apply a
92 * factor of %$R$% to all of your numbers so that when you multiply and
93 * perform a Montgomery reduction you get %$(x R \cdot y R) R^{-1} \bmod m$%,
94 * which is just %$x y R \bmod m$%. Thanks to distributivity, even additions
95 * and subtractions can be performed on numbers in this form -- the extra
96 * factor of %$R$% just runs through all the calculations until it's finally
97 * stripped out by a final reduction operation.
98 */
99
100 /*----- Data structures ---------------------------------------------------*/
101
102 /* --- A Montgomery reduction context --- */
103
104 typedef struct mpmont {
105 mp *m; /* Modulus */
106 mp *mi; /* %$-m^{-1} \bmod R$% */
107 size_t n; /* %$\log_b R$% */
108 mp *r, *r2; /* %$R \bmod m$%, %$R^2 \bmod m$% */
109 } mpmont;
110
111 /*----- Functions provided ------------------------------------------------*/
112
113 /* --- @mpmont_create@ --- *
114 *
115 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
116 * @mp *m@ = modulus to use
117 *
118 * Returns: ---
119 *
120 * Use: Initializes a Montgomery reduction context ready for use.
121 * The argument @m@ must be a positive odd integer.
122 */
123
124 extern void mpmont_create(mpmont */*mm*/, mp */*m*/);
125
126 /* --- @mpmont_destroy@ --- *
127 *
128 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
129 *
130 * Returns: ---
131 *
132 * Use: Disposes of a context when it's no longer of any use to
133 * anyone.
134 */
135
136 extern void mpmont_destroy(mpmont */*mm*/);
137
138 /* --- @mpmont_reduce@ --- *
139 *
140 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
141 * @mp *d@ = destination
142 * @mp *a@ = source, assumed positive
143 *
144 * Returns: Result, %$a R^{-1} \bmod m$%.
145 */
146
147 extern mp *mpmont_reduce(mpmont */*mm*/, mp */*d*/, mp */*a*/);
148
149 /* --- @mpmont_mul@ --- *
150 *
151 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
152 * @mp *d@ = destination
153 * @mp *a, *b@ = sources, assumed positive
154 *
155 * Returns: Result, %$a b R^{-1} \bmod m$%.
156 */
157
158 extern mp *mpmont_mul(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*b*/);
159
160 /* --- @mpmont_expr@ --- *
161 *
162 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
163 * @mp *d@ = fake destination
164 * @mp *a@ = base
165 * @mp *e@ = exponent
166 *
167 * Returns: Result, %$(a R^{-1})^e R \bmod m$%. This is useful if
168 * further modular arithmetic is to be performed on the result.
169 */
170
171 extern mp *mpmont_expr(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/);
172
173 /* --- @mpmont_exp@ --- *
174 *
175 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
176 * @mp *d@ = fake destination
177 * @mp *a@ = base
178 * @mp *e@ = exponent
179 *
180 * Returns: Result, %$a^e \bmod m$%.
181 */
182
183 extern mp *mpmont_exp(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/);
184
185 /* --- @mpmont_mexpr@ --- *
186 *
187 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
188 * @mp *d@ = fake destination
189 * @mp_expfactor *f@ = pointer to array of factors
190 * @size_t n@ = number of factors supplied
191 *
192 * Returns: If the bases are %$g_0, g_1, \ldots, g_{n-1}$% and the
193 * exponents are %$e_0, e_1, \ldots, e_{n-1}$% then the result
194 * is:
195 *
196 * %$g_0^{e_0} g_1^{e_1} \ldots g_{n-1}^{e_{n-1}} \bmod m$%
197 *
198 *
199 * except that the %$g_i$% and result are in Montgomery form.
200 */
201
202 extern mp *mpmont_mexpr(mpmont */*mm*/, mp */*d*/,
203 mp_expfactor */*f*/, size_t /*n*/);
204
205 /* --- @mpmont_mexp@ --- *
206 *
207 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
208 * @mp *d@ = fake destination
209 * @mp_expfactor *f@ = pointer to array of factors
210 * @size_t n@ = number of factors supplied
211 *
212 * Returns: Product of bases raised to exponents, all mod @m@.
213 *
214 * Use: Convenient interface over @mpmont_mexpr@.
215 */
216
217 extern mp *mpmont_mexp(mpmont */*mm*/, mp */*d*/,
218 mp_expfactor */*f*/, size_t /*n*/);
219
220 /*----- That's all, folks -------------------------------------------------*/
221
222 #ifdef __cplusplus
223 }
224 #endif
225
226 #endif