New function for division by a small integer.
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.7 1999/12/22 15:49:07 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.7 1999/12/22 15:49:07 mdw
34 * New function for division by a small integer.
35 *
36 * Revision 1.6 1999/11/20 22:43:44 mdw
37 * Integrate testing for MPX routines.
38 *
39 * Revision 1.5 1999/11/20 22:23:27 mdw
40 * Add function versions of some low-level macros with wider use.
41 *
42 * Revision 1.4 1999/11/17 18:04:09 mdw
43 * Add two's-complement functionality. Improve mpx_udiv a little by
44 * performing the multiplication of the divisor by q with the subtraction
45 * from r.
46 *
47 * Revision 1.3 1999/11/13 01:57:31 mdw
48 * Remove stray debugging code.
49 *
50 * Revision 1.2 1999/11/13 01:50:59 mdw
51 * Multiprecision routines finished and tested.
52 *
53 * Revision 1.1 1999/09/03 08:41:12 mdw
54 * Initial import.
55 *
56 */
57
58 /*----- Header files ------------------------------------------------------*/
59
60 #include <assert.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <string.h>
64
65 #include <mLib/bits.h>
66
67 #include "mptypes.h"
68 #include "mpx.h"
69
70 /*----- Loading and storing -----------------------------------------------*/
71
72 /* --- @mpx_storel@ --- *
73 *
74 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
75 * @void *pp@ = pointer to octet array
76 * @size_t sz@ = size of octet array
77 *
78 * Returns: ---
79 *
80 * Use: Stores an MP in an octet array, least significant octet
81 * first. High-end octets are silently discarded if there
82 * isn't enough space for them.
83 */
84
85 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
86 {
87 mpw n, w = 0;
88 octet *p = pp, *q = p + sz;
89 unsigned bits = 0;
90
91 while (p < q) {
92 if (bits < 8) {
93 if (v >= vl) {
94 *p++ = U8(w);
95 break;
96 }
97 n = *v++;
98 *p++ = U8(w | n << bits);
99 w = n >> (8 - bits);
100 bits += MPW_BITS - 8;
101 } else {
102 *p++ = U8(w);
103 w >>= 8;
104 bits -= 8;
105 }
106 }
107 memset(p, 0, q - p);
108 }
109
110 /* --- @mpx_loadl@ --- *
111 *
112 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
113 * @const void *pp@ = pointer to octet array
114 * @size_t sz@ = size of octet array
115 *
116 * Returns: ---
117 *
118 * Use: Loads an MP in an octet array, least significant octet
119 * first. High-end octets are ignored if there isn't enough
120 * space for them.
121 */
122
123 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
124 {
125 unsigned n;
126 mpw w = 0;
127 const octet *p = pp, *q = p + sz;
128 unsigned bits = 0;
129
130 if (v >= vl)
131 return;
132 while (p < q) {
133 n = U8(*p++);
134 w |= n << bits;
135 bits += 8;
136 if (bits >= MPW_BITS) {
137 *v++ = MPW(w);
138 w = n >> (MPW_BITS - bits + 8);
139 bits -= MPW_BITS;
140 if (v >= vl)
141 return;
142 }
143 }
144 *v++ = w;
145 MPX_ZERO(v, vl);
146 }
147
148 /* --- @mpx_storeb@ --- *
149 *
150 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
151 * @void *pp@ = pointer to octet array
152 * @size_t sz@ = size of octet array
153 *
154 * Returns: ---
155 *
156 * Use: Stores an MP in an octet array, most significant octet
157 * first. High-end octets are silently discarded if there
158 * isn't enough space for them.
159 */
160
161 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
162 {
163 mpw n, w = 0;
164 octet *p = pp, *q = p + sz;
165 unsigned bits = 0;
166
167 while (q > p) {
168 if (bits < 8) {
169 if (v >= vl) {
170 *--q = U8(w);
171 break;
172 }
173 n = *v++;
174 *--q = U8(w | n << bits);
175 w = n >> (8 - bits);
176 bits += MPW_BITS - 8;
177 } else {
178 *--q = U8(w);
179 w >>= 8;
180 bits -= 8;
181 }
182 }
183 memset(p, 0, q - p);
184 }
185
186 /* --- @mpx_loadb@ --- *
187 *
188 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
189 * @const void *pp@ = pointer to octet array
190 * @size_t sz@ = size of octet array
191 *
192 * Returns: ---
193 *
194 * Use: Loads an MP in an octet array, most significant octet
195 * first. High-end octets are ignored if there isn't enough
196 * space for them.
197 */
198
199 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
200 {
201 unsigned n;
202 mpw w = 0;
203 const octet *p = pp, *q = p + sz;
204 unsigned bits = 0;
205
206 if (v >= vl)
207 return;
208 while (q > p) {
209 n = U8(*--q);
210 w |= n << bits;
211 bits += 8;
212 if (bits >= MPW_BITS) {
213 *v++ = MPW(w);
214 w = n >> (MPW_BITS - bits + 8);
215 bits -= MPW_BITS;
216 if (v >= vl)
217 return;
218 }
219 }
220 *v++ = w;
221 MPX_ZERO(v, vl);
222 }
223
224 /*----- Logical shifting --------------------------------------------------*/
225
226 /* --- @mpx_lsl@ --- *
227 *
228 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
229 * @const mpw *av, *avl@ = source vector base and limit
230 * @size_t n@ = number of bit positions to shift by
231 *
232 * Returns: ---
233 *
234 * Use: Performs a logical shift left operation on an integer.
235 */
236
237 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
238 {
239 size_t nw;
240 unsigned nb;
241
242 /* --- Trivial special case --- */
243
244 if (n == 0)
245 MPX_COPY(dv, dvl, av, avl);
246
247 /* --- Single bit shifting --- */
248
249 else if (n == 1) {
250 mpw w = 0;
251 while (av < avl) {
252 mpw t;
253 if (dv >= dvl)
254 goto done;
255 t = *av++;
256 *dv++ = MPW((t << 1) | w);
257 w = t >> (MPW_BITS - 1);
258 }
259 if (dv >= dvl)
260 goto done;
261 *dv++ = MPW(w);
262 MPX_ZERO(dv, dvl);
263 goto done;
264 }
265
266 /* --- Break out word and bit shifts for more sophisticated work --- */
267
268 nw = n / MPW_BITS;
269 nb = n % MPW_BITS;
270
271 /* --- Handle a shift by a multiple of the word size --- */
272
273 if (nb == 0) {
274 MPX_COPY(dv + nw, dvl, av, avl);
275 memset(dv, 0, MPWS(nw));
276 }
277
278 /* --- And finally the difficult case --- *
279 *
280 * This is a little convoluted, because I have to start from the end and
281 * work backwards to avoid overwriting the source, if they're both the same
282 * block of memory.
283 */
284
285 else {
286 mpw w;
287 size_t nr = MPW_BITS - nb;
288 size_t dvn = dvl - dv;
289 size_t avn = avl - av;
290
291 if (dvn <= nw) {
292 MPX_ZERO(dv, dvl);
293 goto done;
294 }
295
296 if (dvn > avn + nw) {
297 size_t off = avn + nw + 1;
298 MPX_ZERO(dv + off, dvl);
299 dvl = dv + off;
300 w = 0;
301 } else {
302 avl = av + dvn - nw;
303 w = *--avl << nb;
304 }
305
306 while (avl > av) {
307 mpw t = *--avl;
308 *--dvl = (t >> nr) | w;
309 w = t << nb;
310 }
311
312 *--dvl = w;
313 MPX_ZERO(dv, dvl);
314 }
315
316 done:;
317 }
318
319 /* --- @mpx_lsr@ --- *
320 *
321 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
322 * @const mpw *av, *avl@ = source vector base and limit
323 * @size_t n@ = number of bit positions to shift by
324 *
325 * Returns: ---
326 *
327 * Use: Performs a logical shift right operation on an integer.
328 */
329
330 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
331 {
332 size_t nw;
333 unsigned nb;
334
335 /* --- Trivial special case --- */
336
337 if (n == 0)
338 MPX_COPY(dv, dvl, av, avl);
339
340 /* --- Single bit shifting --- */
341
342 else if (n == 1) {
343 mpw w = *av++ >> 1;
344 while (av < avl) {
345 mpw t;
346 if (dv >= dvl)
347 goto done;
348 t = *av++;
349 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
350 w = t >> 1;
351 }
352 if (dv >= dvl)
353 goto done;
354 *dv++ = MPW(w);
355 MPX_ZERO(dv, dvl);
356 goto done;
357 }
358
359 /* --- Break out word and bit shifts for more sophisticated work --- */
360
361 nw = n / MPW_BITS;
362 nb = n % MPW_BITS;
363
364 /* --- Handle a shift by a multiple of the word size --- */
365
366 if (nb == 0)
367 MPX_COPY(dv, dvl, av + nw, avl);
368
369 /* --- And finally the difficult case --- */
370
371 else {
372 mpw w;
373 size_t nr = MPW_BITS - nb;
374
375 av += nw;
376 w = *av++;
377 while (av < avl) {
378 mpw t;
379 if (dv >= dvl)
380 goto done;
381 t = *av++;
382 *dv++ = MPW((w >> nb) | (t << nr));
383 w = t;
384 }
385 if (dv < dvl) {
386 *dv++ = MPW(w >> nb);
387 MPX_ZERO(dv, dvl);
388 }
389 }
390
391 done:;
392 }
393
394 /*----- Unsigned arithmetic -----------------------------------------------*/
395
396 /* --- @mpx_2c@ --- *
397 *
398 * Arguments: @mpw *dv, *dvl@ = destination vector
399 * @const mpw *v, *vl@ = source vector
400 *
401 * Returns: ---
402 *
403 * Use: Calculates the two's complement of @v@.
404 */
405
406 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
407 {
408 mpw c = 0;
409 while (dv < dvl && v < vl)
410 *dv++ = c = MPW(~*v++);
411 if (dv < dvl) {
412 if (c > MPW_MAX / 2)
413 c = MPW(~0);
414 while (dv < dvl)
415 *dv++ = c;
416 }
417 MPX_UADDN(dv, dvl, 1);
418 }
419
420 /* --- @mpx_ucmp@ --- *
421 *
422 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
423 * @const mpw *bv, *bvl@ = second argument vector base and limit
424 *
425 * Returns: Less than, equal to, or greater than zero depending on
426 * whether @a@ is less than, equal to or greater than @b@,
427 * respectively.
428 *
429 * Use: Performs an unsigned integer comparison.
430 */
431
432 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
433 {
434 MPX_SHRINK(av, avl);
435 MPX_SHRINK(bv, bvl);
436
437 if (avl - av > bvl - bv)
438 return (+1);
439 else if (avl - av < bvl - bv)
440 return (-1);
441 else while (avl > av) {
442 mpw a = *--avl, b = *--bvl;
443 if (a > b)
444 return (+1);
445 else if (a < b)
446 return (-1);
447 }
448 return (0);
449 }
450
451 /* --- @mpx_uadd@ --- *
452 *
453 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
454 * @const mpw *av, *avl@ = first addend vector base and limit
455 * @const mpw *bv, *bvl@ = second addend vector base and limit
456 *
457 * Returns: ---
458 *
459 * Use: Performs unsigned integer addition. If the result overflows
460 * the destination vector, high-order bits are discarded. This
461 * means that two's complement addition happens more or less for
462 * free, although that's more a side-effect than anything else.
463 * The result vector may be equal to either or both source
464 * vectors, but may not otherwise overlap them.
465 */
466
467 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
468 const mpw *bv, const mpw *bvl)
469 {
470 mpw c = 0;
471
472 while (av < avl || bv < bvl) {
473 mpw a, b;
474 mpd x;
475 if (dv >= dvl)
476 return;
477 a = (av < avl) ? *av++ : 0;
478 b = (bv < bvl) ? *bv++ : 0;
479 x = (mpd)a + (mpd)b + c;
480 *dv++ = MPW(x);
481 c = x >> MPW_BITS;
482 }
483 if (dv < dvl) {
484 *dv++ = c;
485 MPX_ZERO(dv, dvl);
486 }
487 }
488
489 /* --- @mpx_uaddn@ --- *
490 *
491 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
492 * @mpw n@ = other addend
493 *
494 * Returns: ---
495 *
496 * Use: Adds a small integer to a multiprecision number.
497 */
498
499 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
500
501 /* --- @mpx_usub@ --- *
502 *
503 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
504 * @const mpw *av, *avl@ = first argument vector base and limit
505 * @const mpw *bv, *bvl@ = second argument vector base and limit
506 *
507 * Returns: ---
508 *
509 * Use: Performs unsigned integer subtraction. If the result
510 * overflows the destination vector, high-order bits are
511 * discarded. This means that two's complement subtraction
512 * happens more or less for free, althuogh that's more a side-
513 * effect than anything else. The result vector may be equal to
514 * either or both source vectors, but may not otherwise overlap
515 * them.
516 */
517
518 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
519 const mpw *bv, const mpw *bvl)
520 {
521 mpw c = 0;
522
523 while (av < avl || bv < bvl) {
524 mpw a, b;
525 mpd x;
526 if (dv >= dvl)
527 return;
528 a = (av < avl) ? *av++ : 0;
529 b = (bv < bvl) ? *bv++ : 0;
530 x = (mpd)a - (mpd)b - c;
531 *dv++ = MPW(x);
532 if (x >> MPW_BITS)
533 c = 1;
534 else
535 c = 0;
536 }
537 if (c)
538 c = MPW_MAX;
539 while (dv < dvl)
540 *dv++ = c;
541 }
542
543 /* --- @mpx_usubn@ --- *
544 *
545 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
546 * @n@ = subtrahend
547 *
548 * Returns: ---
549 *
550 * Use: Subtracts a small integer from a multiprecision number.
551 */
552
553 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
554
555 /* --- @mpx_umul@ --- *
556 *
557 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
558 * @const mpw *av, *avl@ = multiplicand vector base and limit
559 * @const mpw *bv, *bvl@ = multiplier vector base and limit
560 *
561 * Returns: ---
562 *
563 * Use: Performs unsigned integer multiplication. If the result
564 * overflows the desination vector, high-order bits are
565 * discarded. The result vector may not overlap the argument
566 * vectors in any way.
567 */
568
569 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
570 const mpw *bv, const mpw *bvl)
571 {
572 /* --- This is probably worthwhile on a multiply --- */
573
574 MPX_SHRINK(av, avl);
575 MPX_SHRINK(bv, bvl);
576
577 /* --- Deal with a multiply by zero --- */
578
579 if (bv == bvl) {
580 MPX_ZERO(dv, dvl);
581 return;
582 }
583
584 /* --- Do the initial multiply and initialize the accumulator --- */
585
586 MPX_UMULN(dv, dvl, av, avl, *bv++);
587
588 /* --- Do the remaining multiply/accumulates --- */
589
590 while (dv < dvl && bv < bvl) {
591 mpw m = *bv++;
592 mpw c = 0;
593 const mpw *avv = av;
594 mpw *dvv = ++dv;
595
596 while (avv < avl) {
597 mpd x;
598 if (dvv >= dvl)
599 goto next;
600 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
601 *dvv++ = MPW(x);
602 c = x >> MPW_BITS;
603 }
604 MPX_UADDN(dvv, dvl, c);
605 next:;
606 }
607 }
608
609 /* --- @mpx_umuln@ --- *
610 *
611 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
612 * @const mpw *av, *avl@ = multiplicand vector base and limit
613 * @mpw m@ = multiplier
614 *
615 * Returns: ---
616 *
617 * Use: Multiplies a multiprecision integer by a single-word value.
618 * The destination and source may be equal. The destination
619 * is completely cleared after use.
620 */
621
622 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
623 {
624 MPX_UMULN(dv, dvl, av, avl, m);
625 }
626
627 /* --- @mpx_umlan@ --- *
628 *
629 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
630 * @const mpw *av, *avl@ = multiplicand vector base and limit
631 * @mpw m@ = multiplier
632 *
633 * Returns: ---
634 *
635 * Use: Multiplies a multiprecision integer by a single-word value
636 * and adds the result to an accumulator.
637 */
638
639 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
640 {
641 MPX_UMLAN(dv, dvl, av, avl, m);
642 }
643
644 /* --- @mpx_usqr@ --- *
645 *
646 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
647 * @const mpw *av, *av@ = source vector base and limit
648 *
649 * Returns: ---
650 *
651 * Use: Performs unsigned integer squaring. The result vector must
652 * not overlap the source vector in any way.
653 */
654
655 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
656 {
657 MPX_ZERO(dv, dvl);
658
659 /* --- Main loop --- */
660
661 while (av < avl) {
662 const mpw *avv = av;
663 mpw *dvv = dv;
664 mpw a = *av;
665 mpd c;
666
667 /* --- Stop if I've run out of destination --- */
668
669 if (dvv >= dvl)
670 break;
671
672 /* --- Work out the square at this point in the proceedings --- */
673
674 {
675 mpd x = (mpd)a * (mpd)a + *dvv;
676 *dvv++ = MPW(x);
677 c = MPW(x >> MPW_BITS);
678 }
679
680 /* --- Now fix up the rest of the vector upwards --- */
681
682 avv++;
683 while (dvv < dvl && avv < avl) {
684 mpd x = (mpd)a * (mpd)*avv++;
685 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
686 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
687 *dvv++ = MPW(y);
688 }
689 while (dvv < dvl && c) {
690 mpd x = c + *dvv;
691 *dvv++ = MPW(x);
692 c = x >> MPW_BITS;
693 }
694
695 /* --- Get ready for the next round --- */
696
697 av++;
698 dv += 2;
699 }
700 }
701
702 /* --- @mpx_udiv@ --- *
703 *
704 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
705 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
706 * @const mpw *dv, *dvl@ = divisor vector base and limit
707 * @mpw *sv, *svl@ = scratch workspace
708 *
709 * Returns: ---
710 *
711 * Use: Performs unsigned integer division. If the result overflows
712 * the quotient vector, high-order bits are discarded. (Clearly
713 * the remainder vector can't overflow.) The various vectors
714 * may not overlap in any way. Yes, I know it's a bit odd
715 * requiring the dividend to be in the result position but it
716 * does make some sense really. The remainder must have
717 * headroom for at least two extra words. The scratch space
718 * must be at least one word larger than the divisor.
719 */
720
721 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
722 const mpw *dv, const mpw *dvl,
723 mpw *sv, mpw *svl)
724 {
725 unsigned norm = 0;
726 size_t scale;
727 mpw d, dd;
728
729 /* --- Initialize the quotient --- */
730
731 MPX_ZERO(qv, qvl);
732
733 /* --- Perform some sanity checks --- */
734
735 MPX_SHRINK(dv, dvl);
736 assert(((void)"division by zero in mpx_udiv", dv < dvl));
737
738 /* --- Normalize the divisor --- *
739 *
740 * The algorithm requires that the divisor be at least two digits long.
741 * This is easy to fix.
742 */
743
744 {
745 unsigned b;
746
747 d = dvl[-1];
748 for (b = MPW_BITS / 2; b; b >>= 1) {
749 if (d < (MPW_MAX >> b)) {
750 d <<= b;
751 norm += b;
752 }
753 }
754 if (dv + 1 == dvl)
755 norm += MPW_BITS;
756 }
757
758 /* --- Normalize the dividend/remainder to match --- */
759
760 if (norm) {
761 mpx_lsl(rv, rvl, rv, rvl, norm);
762 mpx_lsl(sv, svl, dv, dvl, norm);
763 dv = sv;
764 dvl = svl;
765 MPX_SHRINK(dv, dvl);
766 }
767
768 MPX_SHRINK(rv, rvl);
769 d = dvl[-1];
770 dd = dvl[-2];
771
772 /* --- Work out the relative scales --- */
773
774 {
775 size_t rvn = rvl - rv;
776 size_t dvn = dvl - dv;
777
778 /* --- If the divisor is clearly larger, notice this --- */
779
780 if (dvn > rvn) {
781 mpx_lsr(rv, rvl, rv, rvl, norm);
782 return;
783 }
784
785 scale = rvn - dvn;
786 }
787
788 /* --- Calculate the most significant quotient digit --- *
789 *
790 * Because the divisor has its top bit set, this can only happen once. The
791 * pointer arithmetic is a little contorted, to make sure that the
792 * behaviour is defined.
793 */
794
795 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
796 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
797 if (qvl - qv > scale)
798 qv[scale] = 1;
799 }
800
801 /* --- Now for the main loop --- */
802
803 {
804 mpw *rvv = rvl - 2;
805
806 while (scale) {
807 mpw q;
808 mpd rh;
809
810 /* --- Get an estimate for the next quotient digit --- */
811
812 mpw r = rvv[1];
813 mpw rr = rvv[0];
814 mpw rrr = *--rvv;
815
816 scale--;
817 rh = ((mpd)r << MPW_BITS) | rr;
818 if (r == d)
819 q = MPW_MAX;
820 else
821 q = MPW(rh / d);
822
823 /* --- Refine the estimate --- */
824
825 {
826 mpd yh = (mpd)d * q;
827 mpd yl = (mpd)dd * q;
828
829 if (yl > MPW_MAX) {
830 yh += yl >> MPW_BITS;
831 yl &= MPW_MAX;
832 }
833
834 while (yh > rh || (yh == rh && yl > rrr)) {
835 q--;
836 yh -= d;
837 if (yl < dd) {
838 yh++;
839 yl += MPW_MAX;
840 }
841 yl -= dd;
842 }
843 }
844
845 /* --- Remove a chunk from the dividend --- */
846
847 {
848 mpw *svv;
849 const mpw *dvv;
850 mpw mc = 0, sc = 0;
851
852 /* --- Calculate the size of the chunk --- *
853 *
854 * This does the whole job of calculating @r >> scale - qd@.
855 */
856
857 for (svv = rv + scale, dvv = dv;
858 dvv < dvl && svv < rvl;
859 svv++, dvv++) {
860 mpd x = (mpd)*dvv * (mpd)q + mc;
861 mc = x >> MPW_BITS;
862 x = (mpd)*svv - MPW(x) - sc;
863 *svv = MPW(x);
864 if (x >> MPW_BITS)
865 sc = 1;
866 else
867 sc = 0;
868 }
869
870 if (svv < rvl) {
871 mpd x = (mpd)*svv - mc - sc;
872 *svv++ = MPW(x);
873 if (x >> MPW_BITS)
874 sc = MPW_MAX;
875 else
876 sc = 0;
877 while (svv < rvl)
878 *svv++ = sc;
879 }
880
881 /* --- Fix if the quotient was too large --- *
882 *
883 * This doesn't seem to happen very often.
884 */
885
886 if (rvl[-1] > MPW_MAX / 2) {
887 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
888 q--;
889 }
890 }
891
892 /* --- Done for another iteration --- */
893
894 if (qvl - qv > scale)
895 qv[scale] = q;
896 r = rr;
897 rr = rrr;
898 }
899 }
900
901 /* --- Now fiddle with unnormalizing and things --- */
902
903 mpx_lsr(rv, rvl, rv, rvl, norm);
904 }
905
906 /* --- @mpx_udivn@ --- *
907 *
908 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
909 * dividend)
910 * @const mpw *rv, *rvl@ = dividend
911 * @mpw d@ = single-precision divisor
912 *
913 * Returns: Remainder after divison.
914 *
915 * Use: Performs a single-precision division operation.
916 */
917
918 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
919 {
920 size_t i;
921 size_t ql = qvl - qv;
922 mpd r = 0;
923
924 i = rvl - rv;
925 while (i > 0) {
926 i--;
927 r = (r << MPW_BITS) | rv[i];
928 if (i < ql)
929 qv[i] = r / d;
930 r %= d;
931 }
932 return (MPW(r));
933 }
934
935 /*----- Test rig ----------------------------------------------------------*/
936
937 #ifdef TEST_RIG
938
939 #include <mLib/alloc.h>
940 #include <mLib/dstr.h>
941 #include <mLib/quis.h>
942 #include <mLib/testrig.h>
943
944 #include "mpscan.h"
945
946 #define ALLOC(v, vl, sz) do { \
947 size_t _sz = (sz); \
948 mpw *_vv = xmalloc(MPWS(_sz)); \
949 mpw *_vvl = _vv + _sz; \
950 (v) = _vv; \
951 (vl) = _vvl; \
952 } while (0)
953
954 #define LOAD(v, vl, d) do { \
955 const dstr *_d = (d); \
956 mpw *_v, *_vl; \
957 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
958 mpx_loadb(_v, _vl, _d->buf, _d->len); \
959 (v) = _v; \
960 (vl) = _vl; \
961 } while (0)
962
963 #define MAX(x, y) ((x) > (y) ? (x) : (y))
964
965 static void dumpbits(const char *msg, const void *pp, size_t sz)
966 {
967 const octet *p = pp;
968 fputs(msg, stderr);
969 for (; sz; sz--)
970 fprintf(stderr, " %02x", *p++);
971 fputc('\n', stderr);
972 }
973
974 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
975 {
976 fputs(msg, stderr);
977 MPX_SHRINK(v, vl);
978 while (v < vl)
979 fprintf(stderr, " %08lx", (unsigned long)*--vl);
980 fputc('\n', stderr);
981 }
982
983 static int chkscan(const mpw *v, const mpw *vl,
984 const void *pp, size_t sz, int step)
985 {
986 mpscan mps;
987 const octet *p = pp;
988 unsigned bit = 0;
989 int ok = 1;
990
991 mpscan_initx(&mps, v, vl);
992 while (sz) {
993 unsigned x = *p;
994 int i;
995 p += step;
996 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
997 if (MPSCAN_BIT(&mps) != (x & 1)) {
998 fprintf(stderr,
999 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1000 step, bit, x & 1, MPSCAN_BIT(&mps));
1001 ok = 0;
1002 }
1003 x >>= 1;
1004 bit++;
1005 }
1006 sz--;
1007 }
1008
1009 return (ok);
1010 }
1011
1012 static int loadstore(dstr *v)
1013 {
1014 dstr d = DSTR_INIT;
1015 size_t sz = MPW_RQ(v->len) * 2, diff;
1016 mpw *m, *ml;
1017 int ok = 1;
1018
1019 dstr_ensure(&d, v->len);
1020 m = xmalloc(MPWS(sz));
1021
1022 for (diff = 0; diff < sz; diff += 5) {
1023 size_t oct;
1024
1025 ml = m + sz - diff;
1026
1027 mpx_loadl(m, ml, v->buf, v->len);
1028 if (!chkscan(m, ml, v->buf, v->len, +1))
1029 ok = 0;
1030 MPX_OCTETS(oct, m, ml);
1031 mpx_storel(m, ml, d.buf, d.sz);
1032 if (memcmp(d.buf, v->buf, oct) != 0) {
1033 dumpbits("\n*** storel failed", d.buf, d.sz);
1034 ok = 0;
1035 }
1036
1037 mpx_loadb(m, ml, v->buf, v->len);
1038 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1039 ok = 0;
1040 MPX_OCTETS(oct, m, ml);
1041 mpx_storeb(m, ml, d.buf, d.sz);
1042 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1043 dumpbits("\n*** storeb failed", d.buf, d.sz);
1044 ok = 0;
1045 }
1046 }
1047
1048 if (!ok)
1049 dumpbits("input data", v->buf, v->len);
1050
1051 free(m);
1052 dstr_destroy(&d);
1053 return (ok);
1054 }
1055
1056 static int lsl(dstr *v)
1057 {
1058 mpw *a, *al;
1059 int n = *(int *)v[1].buf;
1060 mpw *c, *cl;
1061 mpw *d, *dl;
1062 int ok = 1;
1063
1064 LOAD(a, al, &v[0]);
1065 LOAD(c, cl, &v[2]);
1066 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1067
1068 mpx_lsl(d, dl, a, al, n);
1069 if (MPX_UCMP(d, dl, !=, c, cl)) {
1070 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1071 dumpmp(" a", a, al);
1072 dumpmp("expected", c, cl);
1073 dumpmp(" result", d, dl);
1074 ok = 0;
1075 }
1076
1077 free(a); free(c); free(d);
1078 return (ok);
1079 }
1080
1081 static int lsr(dstr *v)
1082 {
1083 mpw *a, *al;
1084 int n = *(int *)v[1].buf;
1085 mpw *c, *cl;
1086 mpw *d, *dl;
1087 int ok = 1;
1088
1089 LOAD(a, al, &v[0]);
1090 LOAD(c, cl, &v[2]);
1091 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1092
1093 mpx_lsr(d, dl, a, al, n);
1094 if (MPX_UCMP(d, dl, !=, c, cl)) {
1095 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1096 dumpmp(" a", a, al);
1097 dumpmp("expected", c, cl);
1098 dumpmp(" result", d, dl);
1099 ok = 0;
1100 }
1101
1102 free(a); free(c); free(d);
1103 return (ok);
1104 }
1105
1106 static int uadd(dstr *v)
1107 {
1108 mpw *a, *al;
1109 mpw *b, *bl;
1110 mpw *c, *cl;
1111 mpw *d, *dl;
1112 int ok = 1;
1113
1114 LOAD(a, al, &v[0]);
1115 LOAD(b, bl, &v[1]);
1116 LOAD(c, cl, &v[2]);
1117 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1118
1119 mpx_uadd(d, dl, a, al, b, bl);
1120 if (MPX_UCMP(d, dl, !=, c, cl)) {
1121 fprintf(stderr, "\n*** uadd failed\n");
1122 dumpmp(" a", a, al);
1123 dumpmp(" b", b, bl);
1124 dumpmp("expected", c, cl);
1125 dumpmp(" result", d, dl);
1126 ok = 0;
1127 }
1128
1129 free(a); free(b); free(c); free(d);
1130 return (ok);
1131 }
1132
1133 static int usub(dstr *v)
1134 {
1135 mpw *a, *al;
1136 mpw *b, *bl;
1137 mpw *c, *cl;
1138 mpw *d, *dl;
1139 int ok = 1;
1140
1141 LOAD(a, al, &v[0]);
1142 LOAD(b, bl, &v[1]);
1143 LOAD(c, cl, &v[2]);
1144 ALLOC(d, dl, al - a);
1145
1146 mpx_usub(d, dl, a, al, b, bl);
1147 if (MPX_UCMP(d, dl, !=, c, cl)) {
1148 fprintf(stderr, "\n*** usub failed\n");
1149 dumpmp(" a", a, al);
1150 dumpmp(" b", b, bl);
1151 dumpmp("expected", c, cl);
1152 dumpmp(" result", d, dl);
1153 ok = 0;
1154 }
1155
1156 free(a); free(b); free(c); free(d);
1157 return (ok);
1158 }
1159
1160 static int umul(dstr *v)
1161 {
1162 mpw *a, *al;
1163 mpw *b, *bl;
1164 mpw *c, *cl;
1165 mpw *d, *dl;
1166 int ok = 1;
1167
1168 LOAD(a, al, &v[0]);
1169 LOAD(b, bl, &v[1]);
1170 LOAD(c, cl, &v[2]);
1171 ALLOC(d, dl, (al - a) + (bl - b));
1172
1173 mpx_umul(d, dl, a, al, b, bl);
1174 if (MPX_UCMP(d, dl, !=, c, cl)) {
1175 fprintf(stderr, "\n*** umul failed\n");
1176 dumpmp(" a", a, al);
1177 dumpmp(" b", b, bl);
1178 dumpmp("expected", c, cl);
1179 dumpmp(" result", d, dl);
1180 ok = 0;
1181 }
1182
1183 free(a); free(b); free(c); free(d);
1184 return (ok);
1185 }
1186
1187 static int usqr(dstr *v)
1188 {
1189 mpw *a, *al;
1190 mpw *c, *cl;
1191 mpw *d, *dl;
1192 int ok = 1;
1193
1194 LOAD(a, al, &v[0]);
1195 LOAD(c, cl, &v[1]);
1196 ALLOC(d, dl, 2 * (al - a));
1197
1198 mpx_usqr(d, dl, a, al);
1199 if (MPX_UCMP(d, dl, !=, c, cl)) {
1200 fprintf(stderr, "\n*** usqr failed\n");
1201 dumpmp(" a", a, al);
1202 dumpmp("expected", c, cl);
1203 dumpmp(" result", d, dl);
1204 ok = 0;
1205 }
1206
1207 free(a); free(c); free(d);
1208 return (ok);
1209 }
1210
1211 static int udiv(dstr *v)
1212 {
1213 mpw *a, *al;
1214 mpw *b, *bl;
1215 mpw *q, *ql;
1216 mpw *r, *rl;
1217 mpw *qq, *qql;
1218 mpw *s, *sl;
1219 int ok = 1;
1220
1221 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1222 LOAD(b, bl, &v[1]);
1223 LOAD(q, ql, &v[2]);
1224 LOAD(r, rl, &v[3]);
1225 ALLOC(qq, qql, al - a);
1226 ALLOC(s, sl, (bl - b) + 1);
1227
1228 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1229 if (MPX_UCMP(qq, qql, !=, q, ql) ||
1230 MPX_UCMP(a, al, !=, r, rl)) {
1231 fprintf(stderr, "\n*** udiv failed\n");
1232 dumpmp(" divisor", b, bl);
1233 dumpmp("expect r", r, rl);
1234 dumpmp("result r", a, al);
1235 dumpmp("expect q", q, ql);
1236 dumpmp("result q", qq, qql);
1237 ok = 0;
1238 }
1239
1240 free(a); free(b); free(r); free(q); free(s); free(qq);
1241 return (ok);
1242 }
1243
1244 static test_chunk defs[] = {
1245 { "load-store", loadstore, { &type_hex, 0 } },
1246 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1247 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1248 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1249 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1250 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1251 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1252 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1253 { 0, 0, { 0 } }
1254 };
1255
1256 int main(int argc, char *argv[])
1257 {
1258 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1259 return (0);
1260 }
1261
1262
1263 #endif
1264
1265 /*----- That's all, folks -------------------------------------------------*/