math/gfreduce.[ch]: Fix out-of-bounds memory access.
[u/mdw/catacomb] / math / strongprime.c
1 /* -*-c-*-
2 *
3 * Generate `strong' prime numbers
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <mLib/dstr.h>
31
32 #include "grand.h"
33 #include "mp.h"
34 #include "mpmont.h"
35 #include "mprand.h"
36 #include "pgen.h"
37 #include "pfilt.h"
38 #include "rabin.h"
39
40 /*----- Main code ---------------------------------------------------------*/
41
42 /* --- @strongprime_setup@ --- *
43 *
44 * Arguments: @const char *name@ = pointer to name root
45 * @mp *d@ = destination for search start point
46 * @pfilt *f@ = where to store filter jump context
47 * @unsigned nbits@ = number of bits wanted
48 * @grand *r@ = random number source
49 * @unsigned n@ = number of attempts to make
50 * @pgen_proc *event@ = event handler function
51 * @void *ectx@ = argument for the event handler
52 *
53 * Returns: A starting point for a `strong' prime search, or zero.
54 *
55 * Use: Sets up for a strong prime search, so that primes with
56 * particular properties can be found. It's probably important
57 * to note that the number left in the filter context @f@ is
58 * congruent to 2 (mod 4).
59 */
60
61 mp *strongprime_setup(const char *name, mp *d, pfilt *f, unsigned nbits,
62 grand *r, unsigned n, pgen_proc *event, void *ectx)
63 {
64 mp *s, *t, *q;
65 dstr dn = DSTR_INIT;
66
67 mp *rr = d;
68 pgen_filterctx c;
69 pgen_jumpctx j;
70 rabin rb;
71
72 /* --- The bitslop parameter --- *
73 *
74 * There's quite a lot of prime searching to be done. The constant
75 * @BITSLOP@ is a (low) approximation to the base-2 log of the expected
76 * number of steps to find a prime number. Experimentation shows that
77 * numbers around 10 seem to be good.
78 */
79
80 #define BITSLOP 12
81
82 /* --- Choose two primes %$s$% and %$t$% of half the required size --- */
83
84 assert(((void)"nbits too small in strongprime_setup", nbits/2 > BITSLOP));
85 nbits = nbits/2 - BITSLOP;
86 c.step = 1;
87
88 rr = mprand(rr, nbits, r, 1);
89 DRESET(&dn); dstr_putf(&dn, "%s [s]", name);
90 if ((s = pgen(dn.buf, MP_NEWSEC, rr, event, ectx, n, pgen_filter, &c,
91 rabin_iters(nbits), pgen_test, &rb)) == 0)
92 goto fail_s;
93
94 rr = mprand(rr, nbits, r, 1);
95 DRESET(&dn); dstr_putf(&dn, "%s [t]", name);
96 if ((t = pgen(dn.buf, MP_NEWSEC, rr, event, ectx, n, pgen_filter, &c,
97 rabin_iters(nbits), pgen_test, &rb)) == 0)
98 goto fail_t;
99
100 /* --- Choose a suitable value for %$r = 2it + 1$% for some %$i$% --- */
101
102 rr = mp_lsl(rr, t, 1);
103 pfilt_create(&c.f, rr);
104 rr = mp_lsl(rr, rr, BITSLOP - 1);
105 rr = mp_add(rr, rr, MP_ONE);
106 DRESET(&dn); dstr_putf(&dn, "%s [r]", name);
107 j.j = &c.f;
108 nbits += BITSLOP;
109 q = pgen(dn.buf, MP_NEW, rr, event, ectx, n, pgen_jump, &j,
110 rabin_iters(nbits), pgen_test, &rb);
111 pfilt_destroy(&c.f);
112 if (!q)
113 goto fail_r;
114
115 /* --- Select a suitable starting-point for finding %$p$% --- *
116 *
117 * This computes %$p_0 = 2(s^{r - 2} \bmod r)s - 1$%.
118 */
119
120 {
121 mpmont mm;
122
123 mpmont_create(&mm, q);
124 rr = mp_sub(rr, q, MP_TWO);
125 rr = mpmont_exp(&mm, rr, s, rr);
126 mpmont_destroy(&mm);
127 rr = mp_mul(rr, rr, s);
128 rr = mp_lsl(rr, rr, 1);
129 rr = mp_sub(rr, rr, MP_ONE);
130 }
131
132 /* --- Now find %$p = p_0 + 2jrs$% for some %$j$% --- */
133
134 {
135 mp *x;
136 x = mp_mul(MP_NEW, q, s);
137 x = mp_lsl(x, x, 1);
138 pfilt_create(f, x);
139 x = mp_lsl(x, x, BITSLOP - 1);
140 rr = mp_add(rr, rr, x);
141 mp_drop(x);
142 }
143
144 /* --- Return the result --- */
145
146 mp_drop(q);
147 mp_drop(t);
148 mp_drop(s);
149 dstr_destroy(&dn);
150 return (rr);
151
152 /* --- Tidy up if something failed --- */
153
154 fail_r:
155 mp_drop(t);
156 fail_t:
157 mp_drop(s);
158 fail_s:
159 mp_drop(rr);
160 dstr_destroy(&dn);
161 return (0);
162
163 #undef BITSLOP
164 }
165
166 /* --- @strongprime@ --- *
167 *
168 * Arguments: @const char *name@ = pointer to name root
169 * @mp *d@ = destination integer
170 * @unsigned nbits@ = number of bits wanted
171 * @grand *r@ = random number source
172 * @unsigned n@ = number of attempts to make
173 * @pgen_proc *event@ = event handler function
174 * @void *ectx@ = argument for the event handler
175 *
176 * Returns: A `strong' prime, or zero.
177 *
178 * Use: Finds `strong' primes. A strong prime %$p$% is such that
179 *
180 * * %$p - 1$% has a large prime factor %$r$%,
181 * * %$p + 1$% has a large prime factor %$s$%, and
182 * * %$r - 1$% has a large prime factor %$t$%.
183 *
184 * The numbers produced may be slightly larger than requested,
185 * by a few bits.
186 */
187
188 mp *strongprime(const char *name, mp *d, unsigned nbits, grand *r,
189 unsigned n, pgen_proc *event, void *ectx)
190 {
191 pfilt f;
192 pgen_jumpctx j;
193 rabin rb;
194
195 d = strongprime_setup(name, d, &f, nbits, r, n, event, ectx);
196 j.j = &f;
197 d = pgen(name, d, d, event, ectx, n, pgen_jump, &j,
198 rabin_iters(nbits), pgen_test, &rb);
199 pfilt_destroy(&f);
200 return (d);
201 }
202
203 /*----- That's all, folks -------------------------------------------------*/