math/gfreduce.[ch]: Fix out-of-bounds memory access.
[u/mdw/catacomb] / math / mp-modsqrt.c
1 /* -*-c-*-
2 *
3 * Compute square roots modulo a prime
4 *
5 * (c) 2000 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "fibrand.h"
31 #include "grand.h"
32 #include "mp.h"
33 #include "mpmont.h"
34 #include "mprand.h"
35
36 /*----- Main code ---------------------------------------------------------*/
37
38 /* --- @mp_modsqrt@ --- *
39 *
40 * Arguments: @mp *d@ = destination integer
41 * @mp *a@ = source integer
42 * @mp *p@ = modulus (must be prime)
43 *
44 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
45 * a null pointer.
46 *
47 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
48 * if one exists; else a null pointer. This function will not
49 * work if %$p$% is composite: you must factor the modulus, take
50 * a square root mod each factor, and recombine the results
51 * using the Chinese Remainder Theorem.
52 *
53 * We guarantee that the square root returned is the smallest
54 * one (i.e., the `positive' square root).
55 */
56
57 mp *mp_modsqrt(mp *d, mp *a, mp *p)
58 {
59 mpmont mm;
60 size_t i, s;
61 mp *b, *c;
62 mp *ainv;
63 mp *r, *A, *aa;
64 mp *t;
65 grand *gr;
66
67 /* --- Cope if %$a \not\in Q_p$% --- */
68
69 if (mp_jacobi(a, p) != 1) {
70 mp_drop(d);
71 return (0);
72 }
73
74 /* --- Choose some quadratic non-residue --- */
75
76 gr = fibrand_create(0);
77 b = MP_NEW;
78 do b = mprand_range(b, p, gr, 0); while (mp_jacobi(b, p) != -1);
79 gr->ops->destroy(gr);
80
81 /* --- Some initial setup --- */
82
83 mpmont_create(&mm, p);
84 ainv = mp_modinv(MP_NEW, a, p); /* %$a^{-1} \bmod p$% */
85 ainv = mpmont_mul(&mm, ainv, ainv, mm.r2);
86 t = mp_sub(MP_NEW, p, MP_ONE);
87 t = mp_odd(t, t, &s); /* %$2^s t = p - 1$% */
88 b = mpmont_mul(&mm, b, b, mm.r2);
89 c = mpmont_expr(&mm, b, b, t); /* %$b^t \bmod p$% */
90 t = mp_add(t, t, MP_ONE);
91 t = mp_lsr(t, t, 1); /* %$(t + 1)/2$% */
92 a = mpmont_mul(&mm, MP_NEW, a, mm.r2);
93 r = mpmont_expr(&mm, a, a, t); /* %$a^{(t+1)/2} \bmod p$% */
94
95 /* --- Now for the main loop --- *
96 *
97 * Let %$g = c^{-2}$%; we know that %$g$% is a generator of the order-
98 * %$2^{s-1}$% subgroup mod %$p$%. We also know that %$A = a^t = r^2/a$%
99 * is an element of this group. If we can determine %$m$% such that
100 * %$g^m = A$% then %$a^{(t+1)/2}/g^{m/2} = r c^m$% is the square root we
101 * seek.
102 *
103 * Write %$m = m_0 + 2 m'$%. Then %$A^{2^{s-1}} = g^{m_0 2^{s-1}}$%, which
104 * is %$1$% if %$m_0 = 0$% or %$-1$% if %$m_0 = 1$% (modulo %$p$%). Then
105 * %$A/g^{m_0} = (g^2)^{m'}$% and we can proceed inductively. The end
106 * result will me %$A/g^m$%.
107 *
108 * Note that this loop keeps track of (what will be) %$r c^m$%, since this
109 * is the result we want, and computes $A/g^m = r^2/a$% on demand.
110 */
111
112 A = mp_sqr(t, r); A = mpmont_reduce(&mm, A, A);
113 A = mpmont_mul(&mm, A, A, ainv); /* %$x^t/g^m$% */
114
115 while (s-- > 1) {
116 aa = MP_COPY(A);
117 for (i = 1; i < s; i++)
118 { aa = mp_sqr(aa, aa); aa = mpmont_reduce(&mm, aa, aa); }
119 if (!MP_EQ(aa, mm.r)) {
120 r = mpmont_mul(&mm, r, r, c);
121 A = mp_sqr(A, r); A = mpmont_reduce(&mm, A, A);
122 A = mpmont_mul(&mm, A, A, ainv); /* %$x^t/g^m$% */
123 }
124 c = mp_sqr(c, c); c = mpmont_reduce(&mm, c, c);
125 MP_DROP(aa);
126 }
127
128 /* --- We want the smaller square root --- */
129
130 d = mpmont_reduce(&mm, d, r);
131 r = mp_sub(r, p, d);
132 if (MP_CMP(r, <, d)) { mp *tt = r; r = d; d = tt; }
133
134 /* --- Clear away all the temporaries --- */
135
136 mp_drop(ainv);
137 mp_drop(r); mp_drop(c);
138 mp_drop(A);
139 mpmont_destroy(&mm);
140
141 /* --- Done --- */
142
143 return (d);
144 }
145
146 /*----- Test rig ----------------------------------------------------------*/
147
148 #ifdef TEST_RIG
149
150 #include <mLib/testrig.h>
151
152 static int verify(dstr *v)
153 {
154 mp *a = *(mp **)v[0].buf;
155 mp *p = *(mp **)v[1].buf;
156 mp *rr = *(mp **)v[2].buf;
157 mp *r = mp_modsqrt(MP_NEW, a, p);
158 int ok = 0;
159
160 if (!r)
161 ok = 0;
162 else if (MP_EQ(r, rr))
163 ok = 1;
164
165 if (!ok) {
166 fputs("\n*** fail\n", stderr);
167 fputs("a = ", stderr); mp_writefile(a, stderr, 10); fputc('\n', stderr);
168 fputs("p = ", stderr); mp_writefile(p, stderr, 10); fputc('\n', stderr);
169 if (r) {
170 fputs("r = ", stderr);
171 mp_writefile(r, stderr, 10);
172 fputc('\n', stderr);
173 } else
174 fputs("r = <undef>\n", stderr);
175 fputs("rr = ", stderr); mp_writefile(rr, stderr, 10); fputc('\n', stderr);
176 ok = 0;
177 }
178
179 mp_drop(a);
180 mp_drop(p);
181 mp_drop(r);
182 mp_drop(rr);
183 assert(mparena_count(MPARENA_GLOBAL) == 0);
184 return (ok);
185 }
186
187 static test_chunk tests[] = {
188 { "modsqrt", verify, { &type_mp, &type_mp, &type_mp, 0 } },
189 { 0, 0, { 0 } }
190 };
191
192 int main(int argc, char *argv[])
193 {
194 sub_init();
195 test_run(argc, argv, tests, SRCDIR "/t/mp");
196 return (0);
197 }
198
199 #endif
200
201 /*----- That's all, folks -------------------------------------------------*/