Gather up another utility.
[u/mdw/catacomb] / bbs-jump.c
1 /* -*-c-*-
2 *
3 * $Id: bbs-jump.c,v 1.5 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Jumping around a BBS sequence
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include "bbs.h"
33 #include "mp.h"
34 #include "mpbarrett.h"
35 #include "mpcrt.h"
36 #include "mpint.h"
37
38 /*----- Main code ---------------------------------------------------------*/
39
40 /* --- @jump@ --- *
41 *
42 * Arguments: @bbs *b@ = pointer to BBS generator context
43 * @bbs_priv *bp@ = pointer to BBS modulus factors
44 * @unsigned long n@ = number of steps to move
45 * @mp *px@ = exponent mod @p@ for a one-step jump
46 * @mp *qx@ = exponent mod @q@ for a one-step jump
47 *
48 * Returns: ---
49 *
50 * Use: Jumps a BBS context a certain number of places (assuming the
51 * arguments are right).
52 *
53 * Let the BBS modulus be %$n = pq$% and the current residue be
54 * %$x$%. Then the computations performed are:
55 *
56 * * Calculate %$x_p = x \bmod p$% and %$x_q = x \bmod q$%.
57 *
58 * * Determine %$e_p = px^n \bmod (p - 1)$% and similarly
59 * %$e_q = qx^n \bmod (p - 1)$%.
60 *
61 * * Calculate %$x_p' = x_p^{e_p} \bmod p$% and
62 * %$x_q' = x_q^{e_q} \bmod q$%.
63 *
64 * * Combine %$x_p'$% and %$x_q'$% using the Chinese Remainder
65 * Theorem.
66 *
67 * If you want to step the generator forwards, simply set
68 * %$px = qx = 2$%. If you want to step backwards, make
69 * %$px = (p + 1)/4$% and %$qx = (q + 1)/4$%. Note that, if
70 * %$x$% is a quadratic residue mod $%p$%, then
71 *
72 * %$(x^2) ^ {(p + 1)/4}$%
73 * %${} = x^{(p + 1)/2}$%
74 * %${} = x \cdot x^{(p - 1)/2}$%
75 * %${} = x$%
76 *
77 * Simple, no? (Note that the division works because
78 * %$p \equiv 3 \pmod 4$%.)
79 */
80
81 static void jump(bbs *b, bbs_priv *bp, unsigned long n,
82 mp *px, mp *qx)
83 {
84 mp *ep, *eq;
85 mp *v[2] = { MP_NEW, MP_NEW };
86
87 /* --- First work out the exponents --- */
88
89 {
90 mpbarrett mb;
91 mp *m;
92 mp *e;
93
94 e = mp_fromulong(MP_NEW, n);
95 m = mp_sub(MP_NEW, bp->p, MP_ONE);
96 mpbarrett_create(&mb, m);
97 ep = mpbarrett_exp(&mb, MP_NEW, px, e);
98 mpbarrett_destroy(&mb);
99 if (qx == px)
100 eq = MP_COPY(ep);
101 else {
102 m = mp_sub(m, bp->q, MP_ONE);
103 mpbarrett_create(&mb, m);
104 eq = mpbarrett_exp(&mb, MP_NEW, qx, e);
105 mpbarrett_destroy(&mb);
106 }
107
108 mp_drop(m);
109 mp_drop(e);
110 }
111
112 /* --- Now calculate the residues of @x@ --- */
113
114 mp_div(0, &v[0], b->x, bp->p);
115 mp_div(0, &v[1], b->x, bp->q);
116
117 /* --- Exponentiate --- */
118
119 {
120 mpbarrett mb;
121
122 mpbarrett_create(&mb, bp->p);
123 v[0] = mpbarrett_exp(&mb, v[0], v[0], ep);
124 mpbarrett_destroy(&mb);
125
126 mpbarrett_create(&mb, bp->q);
127 v[1] = mpbarrett_exp(&mb, v[1], v[1], eq);
128 mpbarrett_destroy(&mb);
129
130 mp_drop(ep);
131 mp_drop(eq);
132 }
133
134 /* --- Sort out the result using the Chinese Remainder Theorem --- */
135
136 {
137 mpcrt_mod mv[2];
138 mpcrt c;
139 int i;
140
141 mv[0].m = MP_COPY(bp->p);
142 mv[1].m = MP_COPY(bp->q);
143 for (i = 0; i < 2; i++)
144 mv[i].n = mv[i].ni = mv[i].nni = MP_NEW;
145 mpcrt_create(&c, mv, 2, b->mb.m);
146 b->x = mpcrt_solve(&c, b->x, v);
147 mpcrt_destroy(&c);
148 }
149
150 /* --- Tidy away --- */
151
152 mp_drop(v[0]);
153 mp_drop(v[1]);
154 b->r = b->x->v[0];
155 b->b = b->k;
156 }
157
158 /* --- @bbs_ff@ --- *
159 *
160 * Arguments: @bbs *b@ = pointer to a BBS generator state
161 * @bbs_priv *bp@ = pointer to BBS modulus factors
162 * @unsigned long n@ = number of steps to make
163 *
164 * Returns: ---
165 *
166 * Use: `Fast-forwards' a Blum-Blum-Shub generator by @n@ steps.
167 * Requires the factorization of the Blum modulus to do this
168 * efficiently.
169 */
170
171 void bbs_ff(bbs *b, bbs_priv *bp, unsigned long n)
172 {
173 jump(b, bp, n, MP_TWO, MP_TWO);
174 }
175
176 /* --- @bbs_rew@ --- *
177 *
178 * Arguments: @bbs *b@ = pointer to a BBS generator state
179 * @bbs_priv *bp@ = pointer to BBS modulus factors
180 * @unsigned long n@ = number of steps to make
181 *
182 * Returns: ---
183 *
184 * Use: `Rewinds' a Blum-Blum-Shub generator by @n@ steps.
185 * Requires the factorization of the Blum modulus to do this
186 * at all.
187 */
188
189 void bbs_rew(bbs *b, bbs_priv *bp, unsigned long n)
190 {
191 mp *px = mp_lsr(MP_NEW, bp->p, 2);
192 mp *qx = mp_lsr(MP_NEW, bp->q, 2);
193 px = mp_add(px, px, MP_ONE);
194 qx = mp_add(qx, qx, MP_ONE);
195 jump(b, bp, n, px, qx);
196 mp_drop(px);
197 mp_drop(qx);
198 }
199
200 /*----- Test rig ----------------------------------------------------------*/
201
202 #ifdef TEST_RIG
203
204 static int verify(dstr *v)
205 {
206 bbs_priv bp;
207 bbs b;
208 mp *x;
209 unsigned long n;
210 int ok = 1;
211 uint32 p, q, r;
212 int i;
213
214 bp.p = *(mp **)v[0].buf;
215 bp.q = *(mp **)v[1].buf;
216 bp.n = mp_mul(MP_NEW, bp.p, bp.q);
217 x = *(mp **)v[2].buf;
218 n = *(unsigned long *)v[3].buf;
219
220 bbs_create(&b, bp.n, x);
221 p = bbs_bits(&b, 32);
222
223 bbs_seed(&b, x);
224 for (i = 0; i < n; i++)
225 bbs_step(&b);
226 q = bbs_bits(&b, 32);
227 bbs_wrap(&b);
228
229 bbs_rew(&b, &bp, n + (32 + b.k - 1) / b.k);
230 r = bbs_bits(&b, 32);
231
232 if (r != p) {
233 fputs("\n*** bbs rewind failure\n", stderr);
234 fputs("p = ", stderr); mp_writefile(bp.p, stderr, 10); fputc('\n', stderr);
235 fputs("q = ", stderr); mp_writefile(bp.q, stderr, 10); fputc('\n', stderr);
236 fputs("n = ", stderr); mp_writefile(bp.n, stderr, 10); fputc('\n', stderr);
237 fputs("x = ", stderr); mp_writefile(x, stderr, 10); fputc('\n', stderr);
238 fprintf(stderr, "stepped %lu back\n", n + (32 + b.k - 1) / b.k);
239 fprintf(stderr, "expected output = %08lx, found %08lx\n",
240 (unsigned long)p, (unsigned long)r);
241 ok = 0;
242 }
243
244 bbs_seed(&b, x);
245 bbs_ff(&b, &bp, n);
246 r = bbs_bits(&b, 32);
247
248 if (q != r) {
249 fputs("\n*** bbs fastforward failure\n", stderr);
250 fputs("p = ", stderr); mp_writefile(bp.p, stderr, 10); fputc('\n', stderr);
251 fputs("q = ", stderr); mp_writefile(bp.q, stderr, 10); fputc('\n', stderr);
252 fputs("n = ", stderr); mp_writefile(bp.n, stderr, 10); fputc('\n', stderr);
253 fputs("x = ", stderr); mp_writefile(x, stderr, 10); fputc('\n', stderr);
254 fprintf(stderr, "stepped %lu back\n", n + (32 + b.k - 1) / b.k);
255 fprintf(stderr, "expected output = %08lx, found %08lx\n",
256 (unsigned long)q, (unsigned long)r);
257 ok = 0;
258 }
259
260 bbs_destroy(&b);
261 mp_drop(bp.p);
262 mp_drop(bp.q);
263 mp_drop(bp.n);
264 mp_drop(x);
265
266 assert(mparena_count(MPARENA_GLOBAL) == 0);
267 return (ok);
268 }
269
270 static test_chunk tests[] = {
271 { "bbs-jump", verify, { &type_mp, &type_mp, &type_mp, &type_ulong, 0 } },
272 { 0, 0, { 0 } }
273 };
274
275 int main(int argc, char *argv[])
276 {
277 sub_init();
278 test_run(argc, argv, tests, SRCDIR "/tests/bbs");
279 return (0);
280 }
281
282 #endif
283
284 /*----- That's all, folks -------------------------------------------------*/