Release 2.1.2.
[u/mdw/catacomb] / rijndael-mktab.c
1 /* -*-c-*-
2 *
3 * $Id: rijndael-mktab.c,v 1.4 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Build precomputed tables for the Rijndael block cipher
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <assert.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35
36 #include <mLib/bits.h>
37
38 /*----- Magic variables ---------------------------------------------------*/
39
40 static octet s[256], si[256];
41 static uint32 t[4][256], ti[4][256];
42 static uint32 u[4][256];
43 static octet rc[32];
44
45 /*----- Main code ---------------------------------------------------------*/
46
47 /* --- @mul@ --- *
48 *
49 * Arguments: @unsigned x, y@ = polynomials over %$\gf{2^8}$%
50 * @unsigned m@ = modulus
51 *
52 * Returns: The product of two polynomials.
53 *
54 * Use: Computes a product of polynomials, quite slowly.
55 */
56
57 static unsigned mul(unsigned x, unsigned y, unsigned m)
58 {
59 unsigned a = 0;
60 unsigned i;
61
62 for (i = 0; i < 8; i++) {
63 if (y & 1)
64 a ^= x;
65 y >>= 1;
66 x <<= 1;
67 if (x & 0x100)
68 x ^= m;
69 }
70
71 return (a);
72 }
73
74 /* --- @sbox@ --- *
75 *
76 * Build the S-box.
77 *
78 * This is built from inversion in the multiplicative group of
79 * %$\gf{2^8}[x]/(p(x))$%, where %$p(x) = x^8 + x^4 + x^3 + x + 1$%, followed
80 * by an affine transformation treating inputs as vectors over %$\gf{2}$%.
81 * The result is a horrible function.
82 *
83 * The inversion is done slightly sneakily, by building log and antilog
84 * tables. Let %$a$% be an element of the finite field. If the inverse of
85 * %$a$% is %$a^{-1}$%, then %$\log a a^{-1} = 0$%. Hence
86 * %$\log a = -\log a^{-1}$%. This saves fiddling about with Euclidean
87 * algorithm.
88 */
89
90 #define S_MOD 0x11b
91
92 static void sbox(void)
93 {
94 octet log[256], alog[256];
95 unsigned x;
96 unsigned i;
97 unsigned g;
98
99 /* --- Find a suitable generator, and build log tables --- */
100
101 log[0] = 0;
102 for (g = 2; g < 256; g++) {
103 x = 1;
104 for (i = 0; i < 256; i++) {
105 log[x] = i;
106 alog[i] = x;
107 x = mul(x, g, S_MOD);
108 if (x == 1 && i != 254)
109 goto again;
110 }
111 goto done;
112 again:;
113 }
114 fprintf(stderr, "couldn't find generator\n");
115 exit(EXIT_FAILURE);
116 done:;
117
118 /* --- Now grind through and do the affine transform --- *
119 *
120 * The matrix multiply is an AND and a parity op. The add is an XOR.
121 */
122
123 for (i = 0; i < 256; i++) {
124 unsigned j;
125 unsigned m = 0xf8;
126 unsigned v = i ? alog[255 - log[i]] : 0;
127
128 assert(i == 0 || mul(i, v, S_MOD) == 1);
129
130 x = 0;
131 for (j = 0; j < 8; j++) {
132 unsigned r;
133 r = v & m;
134 r = (r >> 4) ^ r;
135 r = (r >> 2) ^ r;
136 r = (r >> 1) ^ r;
137 x = (x << 1) | (r & 1);
138 m = ROR8(m, 1);
139 }
140 x ^= 0x63;
141 s[i] = x;
142 si[x] = i;
143 }
144 }
145
146 /* --- @tbox@ --- *
147 *
148 * Construct the t tables for doing the round function efficiently.
149 */
150
151 static void tbox(void)
152 {
153 unsigned i;
154
155 for (i = 0; i < 256; i++) {
156 uint32 a, b, c, d;
157 uint32 w;
158
159 /* --- Build a forwards t-box entry --- */
160
161 a = s[i];
162 b = a << 1; if (b & 0x100) b ^= S_MOD;
163 c = a ^ b;
164 w = (c << 0) | (a << 8) | (a << 16) | (b << 24);
165 t[0][i] = w;
166 t[1][i] = ROR32(w, 8);
167 t[2][i] = ROR32(w, 16);
168 t[3][i] = ROR32(w, 24);
169
170 /* --- Build a backwards t-box entry --- */
171
172 a = mul(si[i], 0x0e, S_MOD);
173 b = mul(si[i], 0x09, S_MOD);
174 c = mul(si[i], 0x0d, S_MOD);
175 d = mul(si[i], 0x0b, S_MOD);
176 w = (d << 0) | (c << 8) | (b << 16) | (a << 24);
177 ti[0][i] = w;
178 ti[1][i] = ROR32(w, 8);
179 ti[2][i] = ROR32(w, 16);
180 ti[3][i] = ROR32(w, 24);
181 }
182 }
183
184 /* --- @ubox@ --- *
185 *
186 * Construct the tables for performing the decryption key schedule.
187 */
188
189 static void ubox(void)
190 {
191 unsigned i;
192
193 for (i = 0; i < 256; i++) {
194 uint32 a, b, c, d;
195 uint32 w;
196 a = mul(i, 0x0e, S_MOD);
197 b = mul(i, 0x09, S_MOD);
198 c = mul(i, 0x0d, S_MOD);
199 d = mul(i, 0x0b, S_MOD);
200 w = (d << 0) | (c << 8) | (b << 16) | (a << 24);
201 u[0][i] = w;
202 u[1][i] = ROR32(w, 8);
203 u[2][i] = ROR32(w, 16);
204 u[3][i] = ROR32(w, 24);
205 }
206 }
207
208 /* --- Round constants --- */
209
210 static void rcon(void)
211 {
212 unsigned r = 1;
213 int i;
214
215 for (i = 0; i < sizeof(rc); i++) {
216 rc[i] = r;
217 r <<= 1;
218 if (r & 0x100)
219 r ^= S_MOD;
220 }
221 }
222
223 /* --- @main@ --- */
224
225 int main(void)
226 {
227 int i, j;
228
229 puts("\
230 /* -*-c-*-\n\
231 *\n\
232 * Rijndael tables [generated]\n\
233 */\n\
234 \n\
235 #ifndef CATACOMB_RIJNDAEL_TAB_H\n\
236 #define CATACOMB_RIJNDAEL_TAB_H\n\
237 ");
238
239 /* --- Write out the S-box --- */
240
241 sbox();
242 fputs("\
243 /* --- The byte substitution and its inverse --- */\n\
244 \n\
245 #define RIJNDAEL_S { \\\n\
246 ", stdout);
247 for (i = 0; i < 256; i++) {
248 printf("0x%02x", s[i]);
249 if (i == 255)
250 fputs(" \\\n}\n\n", stdout);
251 else if (i % 8 == 7)
252 fputs(", \\\n ", stdout);
253 else
254 fputs(", ", stdout);
255 }
256
257 fputs("\
258 #define RIJNDAEL_SI { \\\n\
259 ", stdout);
260 for (i = 0; i < 256; i++) {
261 printf("0x%02x", si[i]);
262 if (i == 255)
263 fputs(" \\\n}\n\n", stdout);
264 else if (i % 8 == 7)
265 fputs(", \\\n ", stdout);
266 else
267 fputs(", ", stdout);
268 }
269
270 /* --- Write out the big t tables --- */
271
272 tbox();
273 fputs("\
274 /* --- The big round tables --- */\n\
275 \n\
276 #define RIJNDAEL_T { \\\n\
277 { ", stdout);
278 for (j = 0; j < 4; j++) {
279 for (i = 0; i < 256; i++) {
280 printf("0x%08lx", (unsigned long)t[j][i]);
281 if (i == 255) {
282 if (j == 3)
283 fputs(" } \\\n}\n\n", stdout);
284 else
285 fputs(" }, \\\n\
286 \\\n\
287 { ", stdout);
288 } else if (i % 4 == 3)
289 fputs(", \\\n ", stdout);
290 else
291 fputs(", ", stdout);
292 }
293 }
294
295 fputs("\
296 #define RIJNDAEL_TI { \\\n\
297 { ", stdout);
298 for (j = 0; j < 4; j++) {
299 for (i = 0; i < 256; i++) {
300 printf("0x%08lx", (unsigned long)ti[j][i]);
301 if (i == 255) {
302 if (j == 3)
303 fputs(" } \\\n}\n\n", stdout);
304 else
305 fputs(" }, \\\n\
306 \\\n\
307 { ", stdout);
308 } else if (i % 4 == 3)
309 fputs(", \\\n ", stdout);
310 else
311 fputs(", ", stdout);
312 }
313 }
314
315 /* --- Write out the big u tables --- */
316
317 ubox();
318 fputs("\
319 /* --- The decryption key schedule tables --- */\n\
320 \n\
321 #define RIJNDAEL_U { \\\n\
322 { ", stdout);
323 for (j = 0; j < 4; j++) {
324 for (i = 0; i < 256; i++) {
325 printf("0x%08lx", (unsigned long)u[j][i]);
326 if (i == 255) {
327 if (j == 3)
328 fputs(" } \\\n}\n\n", stdout);
329 else
330 fputs(" }, \\\n\
331 \\\n\
332 { ", stdout);
333 } else if (i % 4 == 3)
334 fputs(", \\\n ", stdout);
335 else
336 fputs(", ", stdout);
337 }
338 }
339
340 /* --- Round constants --- */
341
342 rcon();
343 fputs("\
344 /* --- The round constants --- */\n\
345 \n\
346 #define RIJNDAEL_RCON { \\\n\
347 ", stdout);
348 for (i = 0; i < sizeof(rc); i++) {
349 printf("0x%02x", rc[i]);
350 if (i == sizeof(rc) - 1)
351 fputs(" \\\n}\n\n", stdout);
352 else if (i % 8 == 7)
353 fputs(", \\\n ", stdout);
354 else
355 fputs(", ", stdout);
356 }
357
358 /* --- Done --- */
359
360 puts("#endif");
361
362 if (fclose(stdout)) {
363 fprintf(stderr, "error writing data\n");
364 exit(EXIT_FAILURE);
365 }
366
367 return (0);
368 }
369
370 /*----- That's all, folks -------------------------------------------------*/