51d9b68fdc0ae8174699797ffdc73eb19446e4bd
[u/mdw/catacomb] / mpcrt.c
1 /* -*-c-*-
2 *
3 * $Id: mpcrt.c,v 1.2 1999/12/10 23:22:32 mdw Exp $
4 *
5 * Chinese Remainder Theorem computations (Gauss's algorithm)
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpcrt.c,v $
33 * Revision 1.2 1999/12/10 23:22:32 mdw
34 * Interface changes for suggested destinations. Use Barrett reduction.
35 *
36 * Revision 1.1 1999/11/22 20:50:57 mdw
37 * Add support for solving Chinese Remainder Theorem problems.
38 *
39 */
40
41 /*----- Header files ------------------------------------------------------*/
42
43 #include "mp.h"
44 #include "mpcrt.h"
45 #include "mpbarrett.h"
46
47 /*----- Main code ---------------------------------------------------------*/
48
49 /* --- @mpcrt_create@ --- *
50 *
51 * Arguments: @mpcrt *c@ = pointer to CRT context
52 * @mpcrt_mod *v@ = pointer to vector of moduli
53 * @size_t k@ = number of moduli
54 * @mp *n@ = product of all moduli (@MP_NEW@ if unknown)
55 *
56 * Returns: ---
57 *
58 * Use: Initializes a context for solving Chinese Remainder Theorem
59 * problems. The vector of moduli can be incomplete. Omitted
60 * items must be left as null pointers. Not all combinations of
61 * missing things can be coped with, even if there is
62 * technically enough information to cope. For example, if @n@
63 * is unspecified, all the @m@ values must be present, even if
64 * there is one modulus with both @m@ and @n@ (from which the
65 * product of all moduli could clearly be calculated).
66 */
67
68 void mpcrt_create(mpcrt *c, mpcrt_mod *v, size_t k, mp *n)
69 {
70 size_t i;
71
72 /* --- Simple initialization things --- */
73
74 c->k = k;
75 c->v = v;
76
77 /* --- Work out @n@ if I don't have it already --- */
78
79 if (n != MP_NEW)
80 n = MP_COPY(n);
81 else {
82 n = MP_COPY(v[0].m);
83 for (i = 1; i < k; i++)
84 n = mp_mul(n, n, v[i].m);
85 }
86
87 /* --- A quick hack if %$k = 2$% --- */
88
89 if (k == 2) {
90
91 /* --- The %$n / n_i$% values are trivial in this case --- */
92
93 if (!v[0].n)
94 v[0].n = MP_COPY(v[1].m);
95 if (!v[1].n)
96 v[1].n = MP_COPY(v[0].m);
97
98 /* --- Now sort out the inverses --- *
99 *
100 * @mp_gcd@ will ensure that the first argument is negative.
101 */
102
103 if (!v[0].ni && !v[1].ni) {
104 mp_gcd(0, &v[0].ni, &v[1].ni, v[0].n, v[1].n);
105 v[0].ni = mp_add(v[0].ni, v[0].ni, v[1].n);
106 } else {
107 int i, j;
108 mp *x;
109
110 if (!v[0].ni)
111 i = 0, j = 1;
112 else
113 i = 1, j = 0;
114
115 x = mp_mul(MP_NEW, v[j].n, v[j].ni);
116 x = mp_sub(x, x, MP_ONE);
117 mp_div(&x, 0, x, v[i].n);
118 v[i].ni = x;
119 }
120 }
121
122 /* --- Set up the Barrett context --- */
123
124 mpbarrett_create(&c->mb, n);
125
126 /* --- Walk through filling in @n@, @ni@ and @nnir@ --- */
127
128 for (i = 0; i < k; i++) {
129 if (!v[i].n)
130 mp_div(&v[i].n, 0, n, v[i].m);
131 if (!v[i].ni)
132 mp_gcd(0, &v[i].ni, 0, v[i].n, v[i].m);
133 if (!v[i].nni)
134 v[i].nni = mp_mul(MP_NEW, v[i].n, v[i].ni);
135 }
136
137 /* --- Done --- */
138
139 mp_drop(n);
140 }
141
142 /* --- @mpcrt_destroy@ --- *
143 *
144 * Arguments: @mpcrt *c@ - pointer to CRT context
145 *
146 * Returns: ---
147 *
148 * Use: Destroys a CRT context, releasing all the resources it holds.
149 */
150
151 void mpcrt_destroy(mpcrt *c)
152 {
153 size_t i;
154
155 for (i = 0; i < c->k; i++) {
156 if (c->v[i].m) mp_drop(c->v[i].m);
157 if (c->v[i].n) mp_drop(c->v[i].n);
158 if (c->v[i].ni) mp_drop(c->v[i].ni);
159 if (c->v[i].nni) mp_drop(c->v[i].nni);
160 }
161 mpbarrett_destroy(&c->mb);
162 }
163
164 /* --- @mpcrt_solve@ --- *
165 *
166 * Arguments: @mpcrt *c@ = pointer to CRT context
167 * @mp *d@ = fake destination
168 * @mp **v@ = array of residues
169 *
170 * Returns: The unique solution modulo the product of the individual
171 * moduli, which leaves the given residues.
172 *
173 * Use: Constructs a result given its residue modulo an array of
174 * coprime integers. This can be used to improve performance of
175 * RSA encryption or Blum-Blum-Shub generation if the factors
176 * of the modulus are known, since results can be computed mod
177 * each of the individual factors and then combined at the end.
178 * This is rather faster than doing the full-scale modular
179 * exponentiation.
180 */
181
182 mp *mpcrt_solve(mpcrt *c, mp *d, mp **v)
183 {
184 mp *a = MP_ZERO;
185 mp *x = MP_NEW;
186 size_t i;
187
188 for (i = 0; i < c->k; i++) {
189 x = mp_mul(x, c->v[i].nni, v[i]);
190 x = mpbarrett_reduce(&c->mb, x, x);
191 a = mp_add(a, a, x);
192 }
193 if (x)
194 MP_DROP(x);
195 a = mpbarrett_reduce(&c->mb, a, a);
196 if (d != MP_NEW)
197 MP_DROP(d);
198 return (a);
199 }
200
201 /*----- Test rig ----------------------------------------------------------*/
202
203 #ifdef TEST_RIG
204
205 static int verify(size_t n, dstr *v)
206 {
207 mpcrt_mod *m = xmalloc(n * sizeof(mpcrt_mod));
208 mp **r = xmalloc(n * sizeof(mp *));
209 mpcrt c;
210 mp *a, *b;
211 size_t i;
212 int ok = 1;
213
214 for (i = 0; i < n; i++) {
215 r[i] = *(mp **)v[2 * i].buf;
216 m[i].m = *(mp **)v[2 * i + 1].buf;
217 m[i].n = 0;
218 m[i].ni = 0;
219 m[i].nni = 0;
220 }
221 a = *(mp **)v[2 * n].buf;
222
223 mpcrt_create(&c, m, n, 0);
224 b = mpcrt_solve(&c, MP_NEW, r);
225
226 if (MP_CMP(a, !=, b)) {
227 fputs("\n*** failed\n", stderr);
228 fputs("n = ", stderr);
229 mp_writefile(c.mb.m, stderr, 10);
230 for (i = 0; i < n; i++) {
231 fprintf(stderr, "\nr[%u] = ", i);
232 mp_writefile(r[i], stderr, 10);
233 fprintf(stderr, "\nm[%u] = ", i);
234 mp_writefile(m[i].m, stderr, 10);
235 fprintf(stderr, "\nN[%u] = ", i);
236 mp_writefile(m[i].n, stderr, 10);
237 fprintf(stderr, "\nM[%u] = ", i);
238 mp_writefile(m[i].ni, stderr, 10);
239 }
240 fputs("\nresult = ", stderr);
241 mp_writefile(b, stderr, 10);
242 fputs("\nexpect = ", stderr);
243 mp_writefile(a, stderr, 10);
244 fputc('\n', stderr);
245 ok = 0;
246 }
247
248 for (i = 0; i < n; i++)
249 mp_drop(r[i]);
250 mp_drop(a);
251 mp_drop(b);
252 mpcrt_destroy(&c);
253 free(m);
254 free(r);
255 assert(mparena_count(MPARENA_GLOBAL) == 0);
256 return (ok);
257 }
258
259 static int crt1(dstr *v) { return verify(1, v); }
260 static int crt2(dstr *v) { return verify(2, v); }
261 static int crt3(dstr *v) { return verify(3, v); }
262 static int crt4(dstr *v) { return verify(4, v); }
263 static int crt5(dstr *v) { return verify(5, v); }
264
265 static test_chunk tests[] = {
266 { "crt-1", crt1, { &type_mp, &type_mp,
267 &type_mp, 0 } },
268 { "crt-2", crt2, { &type_mp, &type_mp,
269 &type_mp, &type_mp,
270 &type_mp, 0 } },
271 { "crt-3", crt3, { &type_mp, &type_mp,
272 &type_mp, &type_mp,
273 &type_mp, &type_mp,
274 &type_mp, 0 } },
275 { "crt-4", crt4, { &type_mp, &type_mp,
276 &type_mp, &type_mp,
277 &type_mp, &type_mp,
278 &type_mp, &type_mp,
279 &type_mp, 0 } },
280 { "crt-5", crt5, { &type_mp, &type_mp,
281 &type_mp, &type_mp,
282 &type_mp, &type_mp,
283 &type_mp, &type_mp,
284 &type_mp, &type_mp,
285 &type_mp, 0 } },
286 { 0, 0, { 0 } }
287 };
288
289 int main(int argc, char *argv[])
290 {
291 sub_init();
292 test_run(argc, argv, tests, SRCDIR "/tests/mpcrt");
293 return (0);
294 }
295
296 #endif
297
298 /*----- That's all, folks -------------------------------------------------*/