Fix overflows in shift primitives.
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.14 2002/10/19 18:55:08 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.14 2002/10/19 18:55:08 mdw
34 * Fix overflows in shift primitives.
35 *
36 * Revision 1.13 2002/10/19 17:56:50 mdw
37 * Fix bit operations. Test them (a bit) better.
38 *
39 * Revision 1.12 2002/10/06 22:52:50 mdw
40 * Pile of changes for supporting two's complement properly.
41 *
42 * Revision 1.11 2001/04/03 19:36:05 mdw
43 * Add some simple bitwise operations so that Perl can use them.
44 *
45 * Revision 1.10 2000/10/08 12:06:12 mdw
46 * Provide @mpx_ueq@ for rapidly testing equality of two integers.
47 *
48 * Revision 1.9 2000/06/26 07:52:50 mdw
49 * Portability fix for the bug fix.
50 *
51 * Revision 1.8 2000/06/25 12:59:02 mdw
52 * (mpx_udiv): Fix bug in quotient digit estimation.
53 *
54 * Revision 1.7 1999/12/22 15:49:07 mdw
55 * New function for division by a small integer.
56 *
57 * Revision 1.6 1999/11/20 22:43:44 mdw
58 * Integrate testing for MPX routines.
59 *
60 * Revision 1.5 1999/11/20 22:23:27 mdw
61 * Add function versions of some low-level macros with wider use.
62 *
63 * Revision 1.4 1999/11/17 18:04:09 mdw
64 * Add two's-complement functionality. Improve mpx_udiv a little by
65 * performing the multiplication of the divisor by q with the subtraction
66 * from r.
67 *
68 * Revision 1.3 1999/11/13 01:57:31 mdw
69 * Remove stray debugging code.
70 *
71 * Revision 1.2 1999/11/13 01:50:59 mdw
72 * Multiprecision routines finished and tested.
73 *
74 * Revision 1.1 1999/09/03 08:41:12 mdw
75 * Initial import.
76 *
77 */
78
79 /*----- Header files ------------------------------------------------------*/
80
81 #include <assert.h>
82 #include <stdio.h>
83 #include <stdlib.h>
84 #include <string.h>
85
86 #include <mLib/bits.h>
87
88 #include "mptypes.h"
89 #include "mpx.h"
90 #include "bitops.h"
91
92 /*----- Loading and storing -----------------------------------------------*/
93
94 /* --- @mpx_storel@ --- *
95 *
96 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
97 * @void *pp@ = pointer to octet array
98 * @size_t sz@ = size of octet array
99 *
100 * Returns: ---
101 *
102 * Use: Stores an MP in an octet array, least significant octet
103 * first. High-end octets are silently discarded if there
104 * isn't enough space for them.
105 */
106
107 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
108 {
109 mpw n, w = 0;
110 octet *p = pp, *q = p + sz;
111 unsigned bits = 0;
112
113 while (p < q) {
114 if (bits < 8) {
115 if (v >= vl) {
116 *p++ = U8(w);
117 break;
118 }
119 n = *v++;
120 *p++ = U8(w | n << bits);
121 w = n >> (8 - bits);
122 bits += MPW_BITS - 8;
123 } else {
124 *p++ = U8(w);
125 w >>= 8;
126 bits -= 8;
127 }
128 }
129 memset(p, 0, q - p);
130 }
131
132 /* --- @mpx_loadl@ --- *
133 *
134 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
135 * @const void *pp@ = pointer to octet array
136 * @size_t sz@ = size of octet array
137 *
138 * Returns: ---
139 *
140 * Use: Loads an MP in an octet array, least significant octet
141 * first. High-end octets are ignored if there isn't enough
142 * space for them.
143 */
144
145 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
146 {
147 unsigned n;
148 mpw w = 0;
149 const octet *p = pp, *q = p + sz;
150 unsigned bits = 0;
151
152 if (v >= vl)
153 return;
154 while (p < q) {
155 n = U8(*p++);
156 w |= n << bits;
157 bits += 8;
158 if (bits >= MPW_BITS) {
159 *v++ = MPW(w);
160 w = n >> (MPW_BITS - bits + 8);
161 bits -= MPW_BITS;
162 if (v >= vl)
163 return;
164 }
165 }
166 *v++ = w;
167 MPX_ZERO(v, vl);
168 }
169
170 /* --- @mpx_storeb@ --- *
171 *
172 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
173 * @void *pp@ = pointer to octet array
174 * @size_t sz@ = size of octet array
175 *
176 * Returns: ---
177 *
178 * Use: Stores an MP in an octet array, most significant octet
179 * first. High-end octets are silently discarded if there
180 * isn't enough space for them.
181 */
182
183 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
184 {
185 mpw n, w = 0;
186 octet *p = pp, *q = p + sz;
187 unsigned bits = 0;
188
189 while (q > p) {
190 if (bits < 8) {
191 if (v >= vl) {
192 *--q = U8(w);
193 break;
194 }
195 n = *v++;
196 *--q = U8(w | n << bits);
197 w = n >> (8 - bits);
198 bits += MPW_BITS - 8;
199 } else {
200 *--q = U8(w);
201 w >>= 8;
202 bits -= 8;
203 }
204 }
205 memset(p, 0, q - p);
206 }
207
208 /* --- @mpx_loadb@ --- *
209 *
210 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
211 * @const void *pp@ = pointer to octet array
212 * @size_t sz@ = size of octet array
213 *
214 * Returns: ---
215 *
216 * Use: Loads an MP in an octet array, most significant octet
217 * first. High-end octets are ignored if there isn't enough
218 * space for them.
219 */
220
221 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
222 {
223 unsigned n;
224 mpw w = 0;
225 const octet *p = pp, *q = p + sz;
226 unsigned bits = 0;
227
228 if (v >= vl)
229 return;
230 while (q > p) {
231 n = U8(*--q);
232 w |= n << bits;
233 bits += 8;
234 if (bits >= MPW_BITS) {
235 *v++ = MPW(w);
236 w = n >> (MPW_BITS - bits + 8);
237 bits -= MPW_BITS;
238 if (v >= vl)
239 return;
240 }
241 }
242 *v++ = w;
243 MPX_ZERO(v, vl);
244 }
245
246 /* --- @mpx_storel2cn@ --- *
247 *
248 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
249 * @void *pp@ = pointer to octet array
250 * @size_t sz@ = size of octet array
251 *
252 * Returns: ---
253 *
254 * Use: Stores a negative MP in an octet array, least significant
255 * octet first, as two's complement. High-end octets are
256 * silently discarded if there isn't enough space for them.
257 * This obviously makes the output bad.
258 */
259
260 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
261 {
262 unsigned c = 1;
263 unsigned b = 0;
264 mpw n, w = 0;
265 octet *p = pp, *q = p + sz;
266 unsigned bits = 0;
267
268 while (p < q) {
269 if (bits < 8) {
270 if (v >= vl) {
271 b = w;
272 break;
273 }
274 n = *v++;
275 b = w | n << bits;
276 w = n >> (8 - bits);
277 bits += MPW_BITS - 8;
278 } else {
279 b = w;
280 w >>= 8;
281 bits -= 8;
282 }
283 b = U8(~b + c);
284 c = !b;
285 *p++ = b;
286 }
287 while (p < q) {
288 b = U8(~b + c);
289 c = !b;
290 *p++ = b;
291 b = 0;
292 }
293 }
294
295 /* --- @mpx_loadl2cn@ --- *
296 *
297 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
298 * @const void *pp@ = pointer to octet array
299 * @size_t sz@ = size of octet array
300 *
301 * Returns: ---
302 *
303 * Use: Loads a negative MP in an octet array, least significant
304 * octet first, as two's complement. High-end octets are
305 * ignored if there isn't enough space for them. This probably
306 * means you made the wrong choice coming here.
307 */
308
309 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
310 {
311 unsigned n;
312 unsigned c = 1;
313 mpw w = 0;
314 const octet *p = pp, *q = p + sz;
315 unsigned bits = 0;
316
317 if (v >= vl)
318 return;
319 while (p < q) {
320 n = U8(~(*p++) + c);
321 c = !n;
322 w |= n << bits;
323 bits += 8;
324 if (bits >= MPW_BITS) {
325 *v++ = MPW(w);
326 w = n >> (MPW_BITS - bits + 8);
327 bits -= MPW_BITS;
328 if (v >= vl)
329 return;
330 }
331 }
332 *v++ = w;
333 MPX_ZERO(v, vl);
334 }
335
336 /* --- @mpx_storeb2cn@ --- *
337 *
338 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
339 * @void *pp@ = pointer to octet array
340 * @size_t sz@ = size of octet array
341 *
342 * Returns: ---
343 *
344 * Use: Stores a negative MP in an octet array, most significant
345 * octet first, as two's complement. High-end octets are
346 * silently discarded if there isn't enough space for them,
347 * which probably isn't what you meant.
348 */
349
350 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
351 {
352 mpw n, w = 0;
353 unsigned b = 0;
354 unsigned c = 1;
355 octet *p = pp, *q = p + sz;
356 unsigned bits = 0;
357
358 while (q > p) {
359 if (bits < 8) {
360 if (v >= vl) {
361 b = w;
362 break;
363 }
364 n = *v++;
365 b = w | n << bits;
366 w = n >> (8 - bits);
367 bits += MPW_BITS - 8;
368 } else {
369 b = w;
370 w >>= 8;
371 bits -= 8;
372 }
373 b = U8(~b + c);
374 c = !b;
375 *--q = b;
376 }
377 while (q > p) {
378 b = ~b + c;
379 c = !(b & 0xff);
380 *--q = b;
381 b = 0;
382 }
383 }
384
385 /* --- @mpx_loadb2cn@ --- *
386 *
387 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
388 * @const void *pp@ = pointer to octet array
389 * @size_t sz@ = size of octet array
390 *
391 * Returns: ---
392 *
393 * Use: Loads a negative MP in an octet array, most significant octet
394 * first as two's complement. High-end octets are ignored if
395 * there isn't enough space for them. This probably means you
396 * chose this function wrongly.
397 */
398
399 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
400 {
401 unsigned n;
402 unsigned c = 1;
403 mpw w = 0;
404 const octet *p = pp, *q = p + sz;
405 unsigned bits = 0;
406
407 if (v >= vl)
408 return;
409 while (q > p) {
410 n = U8(~(*--q) + c);
411 c = !n;
412 w |= n << bits;
413 bits += 8;
414 if (bits >= MPW_BITS) {
415 *v++ = MPW(w);
416 w = n >> (MPW_BITS - bits + 8);
417 bits -= MPW_BITS;
418 if (v >= vl)
419 return;
420 }
421 }
422 *v++ = w;
423 MPX_ZERO(v, vl);
424 }
425
426 /*----- Logical shifting --------------------------------------------------*/
427
428 /* --- @mpx_lsl@ --- *
429 *
430 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
431 * @const mpw *av, *avl@ = source vector base and limit
432 * @size_t n@ = number of bit positions to shift by
433 *
434 * Returns: ---
435 *
436 * Use: Performs a logical shift left operation on an integer.
437 */
438
439 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
440 {
441 size_t nw;
442 unsigned nb;
443
444 /* --- Trivial special case --- */
445
446 if (n == 0)
447 MPX_COPY(dv, dvl, av, avl);
448
449 /* --- Single bit shifting --- */
450
451 else if (n == 1) {
452 mpw w = 0;
453 while (av < avl) {
454 mpw t;
455 if (dv >= dvl)
456 goto done;
457 t = *av++;
458 *dv++ = MPW((t << 1) | w);
459 w = t >> (MPW_BITS - 1);
460 }
461 if (dv >= dvl)
462 goto done;
463 *dv++ = MPW(w);
464 MPX_ZERO(dv, dvl);
465 goto done;
466 }
467
468 /* --- Break out word and bit shifts for more sophisticated work --- */
469
470 nw = n / MPW_BITS;
471 nb = n % MPW_BITS;
472
473 /* --- Handle a shift by a multiple of the word size --- */
474
475 if (nb == 0) {
476 if (nw >= dvl - dv)
477 MPX_ZERO(dv, dvl);
478 else {
479 MPX_COPY(dv + nw, dvl, av, avl);
480 memset(dv, 0, MPWS(nw));
481 }
482 }
483
484 /* --- And finally the difficult case --- *
485 *
486 * This is a little convoluted, because I have to start from the end and
487 * work backwards to avoid overwriting the source, if they're both the same
488 * block of memory.
489 */
490
491 else {
492 mpw w;
493 size_t nr = MPW_BITS - nb;
494 size_t dvn = dvl - dv;
495 size_t avn = avl - av;
496
497 if (dvn <= nw) {
498 MPX_ZERO(dv, dvl);
499 goto done;
500 }
501
502 if (dvn > avn + nw) {
503 size_t off = avn + nw + 1;
504 MPX_ZERO(dv + off, dvl);
505 dvl = dv + off;
506 w = 0;
507 } else {
508 avl = av + dvn - nw;
509 w = *--avl << nb;
510 }
511
512 while (avl > av) {
513 mpw t = *--avl;
514 *--dvl = (t >> nr) | w;
515 w = t << nb;
516 }
517
518 *--dvl = w;
519 MPX_ZERO(dv, dvl);
520 }
521
522 done:;
523 }
524
525 /* --- @mpx_lsr@ --- *
526 *
527 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
528 * @const mpw *av, *avl@ = source vector base and limit
529 * @size_t n@ = number of bit positions to shift by
530 *
531 * Returns: ---
532 *
533 * Use: Performs a logical shift right operation on an integer.
534 */
535
536 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
537 {
538 size_t nw;
539 unsigned nb;
540
541 /* --- Trivial special case --- */
542
543 if (n == 0)
544 MPX_COPY(dv, dvl, av, avl);
545
546 /* --- Single bit shifting --- */
547
548 else if (n == 1) {
549 mpw w = *av++ >> 1;
550 while (av < avl) {
551 mpw t;
552 if (dv >= dvl)
553 goto done;
554 t = *av++;
555 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
556 w = t >> 1;
557 }
558 if (dv >= dvl)
559 goto done;
560 *dv++ = MPW(w);
561 MPX_ZERO(dv, dvl);
562 goto done;
563 }
564
565 /* --- Break out word and bit shifts for more sophisticated work --- */
566
567 nw = n / MPW_BITS;
568 nb = n % MPW_BITS;
569
570 /* --- Handle a shift by a multiple of the word size --- */
571
572 if (nb == 0) {
573 if (nw >= avl - av)
574 MPX_ZERO(dv, dvl);
575 else
576 MPX_COPY(dv, dvl, av + nw, avl);
577 }
578
579 /* --- And finally the difficult case --- */
580
581 else {
582 mpw w;
583 size_t nr = MPW_BITS - nb;
584
585 av += nw;
586 w = av < avl ? *av++ : 0;
587 while (av < avl) {
588 mpw t;
589 if (dv >= dvl)
590 goto done;
591 t = *av++;
592 *dv++ = MPW((w >> nb) | (t << nr));
593 w = t;
594 }
595 if (dv < dvl) {
596 *dv++ = MPW(w >> nb);
597 MPX_ZERO(dv, dvl);
598 }
599 }
600
601 done:;
602 }
603
604 /*----- Bitwise operations ------------------------------------------------*/
605
606 /* --- @mpx_bitop@ --- *
607 *
608 * Arguments: @mpw *dv, *dvl@ = destination vector
609 * @const mpw *av, *avl@ = first source vector
610 * @const mpw *bv, *bvl@ = second source vector
611 *
612 * Returns: ---
613 *
614 * Use; Provides the dyadic boolean functions.
615 */
616
617 #define MPX_BITBINOP(string) \
618 \
619 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
620 const mpw *bv, const mpw *bvl) \
621 { \
622 MPX_SHRINK(av, avl); \
623 MPX_SHRINK(bv, bvl); \
624 \
625 while (dv < dvl) { \
626 mpw a, b; \
627 a = (av < avl) ? *av++ : 0; \
628 b = (bv < bvl) ? *bv++ : 0; \
629 *dv++ = B##string(a, b); \
630 } \
631 }
632
633 MPX_DOBIN(MPX_BITBINOP)
634
635 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
636 {
637 MPX_SHRINK(av, avl);
638
639 while (dv < dvl) {
640 mpw a;
641 a = (av < avl) ? *av++ : 0;
642 *dv++ = ~a;
643 }
644 }
645
646 /*----- Unsigned arithmetic -----------------------------------------------*/
647
648 /* --- @mpx_2c@ --- *
649 *
650 * Arguments: @mpw *dv, *dvl@ = destination vector
651 * @const mpw *v, *vl@ = source vector
652 *
653 * Returns: ---
654 *
655 * Use: Calculates the two's complement of @v@.
656 */
657
658 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
659 {
660 mpw c = 0;
661 while (dv < dvl && v < vl)
662 *dv++ = c = MPW(~*v++);
663 if (dv < dvl) {
664 if (c > MPW_MAX / 2)
665 c = MPW(~0);
666 while (dv < dvl)
667 *dv++ = c;
668 }
669 MPX_UADDN(dv, dvl, 1);
670 }
671
672 /* --- @mpx_ueq@ --- *
673 *
674 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
675 * @const mpw *bv, *bvl@ = second argument vector base and limit
676 *
677 * Returns: Nonzero if the two vectors are equal.
678 *
679 * Use: Performs an unsigned integer test for equality.
680 */
681
682 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
683 {
684 MPX_SHRINK(av, avl);
685 MPX_SHRINK(bv, bvl);
686 if (avl - av != bvl - bv)
687 return (0);
688 while (av < avl) {
689 if (*av++ != *bv++)
690 return (0);
691 }
692 return (1);
693 }
694
695 /* --- @mpx_ucmp@ --- *
696 *
697 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
698 * @const mpw *bv, *bvl@ = second argument vector base and limit
699 *
700 * Returns: Less than, equal to, or greater than zero depending on
701 * whether @a@ is less than, equal to or greater than @b@,
702 * respectively.
703 *
704 * Use: Performs an unsigned integer comparison.
705 */
706
707 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
708 {
709 MPX_SHRINK(av, avl);
710 MPX_SHRINK(bv, bvl);
711
712 if (avl - av > bvl - bv)
713 return (+1);
714 else if (avl - av < bvl - bv)
715 return (-1);
716 else while (avl > av) {
717 mpw a = *--avl, b = *--bvl;
718 if (a > b)
719 return (+1);
720 else if (a < b)
721 return (-1);
722 }
723 return (0);
724 }
725
726 /* --- @mpx_uadd@ --- *
727 *
728 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
729 * @const mpw *av, *avl@ = first addend vector base and limit
730 * @const mpw *bv, *bvl@ = second addend vector base and limit
731 *
732 * Returns: ---
733 *
734 * Use: Performs unsigned integer addition. If the result overflows
735 * the destination vector, high-order bits are discarded. This
736 * means that two's complement addition happens more or less for
737 * free, although that's more a side-effect than anything else.
738 * The result vector may be equal to either or both source
739 * vectors, but may not otherwise overlap them.
740 */
741
742 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
743 const mpw *bv, const mpw *bvl)
744 {
745 mpw c = 0;
746
747 while (av < avl || bv < bvl) {
748 mpw a, b;
749 mpd x;
750 if (dv >= dvl)
751 return;
752 a = (av < avl) ? *av++ : 0;
753 b = (bv < bvl) ? *bv++ : 0;
754 x = (mpd)a + (mpd)b + c;
755 *dv++ = MPW(x);
756 c = x >> MPW_BITS;
757 }
758 if (dv < dvl) {
759 *dv++ = c;
760 MPX_ZERO(dv, dvl);
761 }
762 }
763
764 /* --- @mpx_uaddn@ --- *
765 *
766 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
767 * @mpw n@ = other addend
768 *
769 * Returns: ---
770 *
771 * Use: Adds a small integer to a multiprecision number.
772 */
773
774 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
775
776 /* --- @mpx_usub@ --- *
777 *
778 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
779 * @const mpw *av, *avl@ = first argument vector base and limit
780 * @const mpw *bv, *bvl@ = second argument vector base and limit
781 *
782 * Returns: ---
783 *
784 * Use: Performs unsigned integer subtraction. If the result
785 * overflows the destination vector, high-order bits are
786 * discarded. This means that two's complement subtraction
787 * happens more or less for free, althuogh that's more a side-
788 * effect than anything else. The result vector may be equal to
789 * either or both source vectors, but may not otherwise overlap
790 * them.
791 */
792
793 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
794 const mpw *bv, const mpw *bvl)
795 {
796 mpw c = 0;
797
798 while (av < avl || bv < bvl) {
799 mpw a, b;
800 mpd x;
801 if (dv >= dvl)
802 return;
803 a = (av < avl) ? *av++ : 0;
804 b = (bv < bvl) ? *bv++ : 0;
805 x = (mpd)a - (mpd)b - c;
806 *dv++ = MPW(x);
807 if (x >> MPW_BITS)
808 c = 1;
809 else
810 c = 0;
811 }
812 if (c)
813 c = MPW_MAX;
814 while (dv < dvl)
815 *dv++ = c;
816 }
817
818 /* --- @mpx_usubn@ --- *
819 *
820 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
821 * @n@ = subtrahend
822 *
823 * Returns: ---
824 *
825 * Use: Subtracts a small integer from a multiprecision number.
826 */
827
828 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
829
830 /* --- @mpx_umul@ --- *
831 *
832 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
833 * @const mpw *av, *avl@ = multiplicand vector base and limit
834 * @const mpw *bv, *bvl@ = multiplier vector base and limit
835 *
836 * Returns: ---
837 *
838 * Use: Performs unsigned integer multiplication. If the result
839 * overflows the desination vector, high-order bits are
840 * discarded. The result vector may not overlap the argument
841 * vectors in any way.
842 */
843
844 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
845 const mpw *bv, const mpw *bvl)
846 {
847 /* --- This is probably worthwhile on a multiply --- */
848
849 MPX_SHRINK(av, avl);
850 MPX_SHRINK(bv, bvl);
851
852 /* --- Deal with a multiply by zero --- */
853
854 if (bv == bvl) {
855 MPX_ZERO(dv, dvl);
856 return;
857 }
858
859 /* --- Do the initial multiply and initialize the accumulator --- */
860
861 MPX_UMULN(dv, dvl, av, avl, *bv++);
862
863 /* --- Do the remaining multiply/accumulates --- */
864
865 while (dv < dvl && bv < bvl) {
866 mpw m = *bv++;
867 mpw c = 0;
868 const mpw *avv = av;
869 mpw *dvv = ++dv;
870
871 while (avv < avl) {
872 mpd x;
873 if (dvv >= dvl)
874 goto next;
875 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
876 *dvv++ = MPW(x);
877 c = x >> MPW_BITS;
878 }
879 MPX_UADDN(dvv, dvl, c);
880 next:;
881 }
882 }
883
884 /* --- @mpx_umuln@ --- *
885 *
886 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
887 * @const mpw *av, *avl@ = multiplicand vector base and limit
888 * @mpw m@ = multiplier
889 *
890 * Returns: ---
891 *
892 * Use: Multiplies a multiprecision integer by a single-word value.
893 * The destination and source may be equal. The destination
894 * is completely cleared after use.
895 */
896
897 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
898 {
899 MPX_UMULN(dv, dvl, av, avl, m);
900 }
901
902 /* --- @mpx_umlan@ --- *
903 *
904 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
905 * @const mpw *av, *avl@ = multiplicand vector base and limit
906 * @mpw m@ = multiplier
907 *
908 * Returns: ---
909 *
910 * Use: Multiplies a multiprecision integer by a single-word value
911 * and adds the result to an accumulator.
912 */
913
914 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
915 {
916 MPX_UMLAN(dv, dvl, av, avl, m);
917 }
918
919 /* --- @mpx_usqr@ --- *
920 *
921 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
922 * @const mpw *av, *av@ = source vector base and limit
923 *
924 * Returns: ---
925 *
926 * Use: Performs unsigned integer squaring. The result vector must
927 * not overlap the source vector in any way.
928 */
929
930 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
931 {
932 MPX_ZERO(dv, dvl);
933
934 /* --- Main loop --- */
935
936 while (av < avl) {
937 const mpw *avv = av;
938 mpw *dvv = dv;
939 mpw a = *av;
940 mpd c;
941
942 /* --- Stop if I've run out of destination --- */
943
944 if (dvv >= dvl)
945 break;
946
947 /* --- Work out the square at this point in the proceedings --- */
948
949 {
950 mpd x = (mpd)a * (mpd)a + *dvv;
951 *dvv++ = MPW(x);
952 c = MPW(x >> MPW_BITS);
953 }
954
955 /* --- Now fix up the rest of the vector upwards --- */
956
957 avv++;
958 while (dvv < dvl && avv < avl) {
959 mpd x = (mpd)a * (mpd)*avv++;
960 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
961 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
962 *dvv++ = MPW(y);
963 }
964 while (dvv < dvl && c) {
965 mpd x = c + *dvv;
966 *dvv++ = MPW(x);
967 c = x >> MPW_BITS;
968 }
969
970 /* --- Get ready for the next round --- */
971
972 av++;
973 dv += 2;
974 }
975 }
976
977 /* --- @mpx_udiv@ --- *
978 *
979 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
980 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
981 * @const mpw *dv, *dvl@ = divisor vector base and limit
982 * @mpw *sv, *svl@ = scratch workspace
983 *
984 * Returns: ---
985 *
986 * Use: Performs unsigned integer division. If the result overflows
987 * the quotient vector, high-order bits are discarded. (Clearly
988 * the remainder vector can't overflow.) The various vectors
989 * may not overlap in any way. Yes, I know it's a bit odd
990 * requiring the dividend to be in the result position but it
991 * does make some sense really. The remainder must have
992 * headroom for at least two extra words. The scratch space
993 * must be at least one word larger than the divisor.
994 */
995
996 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
997 const mpw *dv, const mpw *dvl,
998 mpw *sv, mpw *svl)
999 {
1000 unsigned norm = 0;
1001 size_t scale;
1002 mpw d, dd;
1003
1004 /* --- Initialize the quotient --- */
1005
1006 MPX_ZERO(qv, qvl);
1007
1008 /* --- Perform some sanity checks --- */
1009
1010 MPX_SHRINK(dv, dvl);
1011 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1012
1013 /* --- Normalize the divisor --- *
1014 *
1015 * The algorithm requires that the divisor be at least two digits long.
1016 * This is easy to fix.
1017 */
1018
1019 {
1020 unsigned b;
1021
1022 d = dvl[-1];
1023 for (b = MPW_BITS / 2; b; b >>= 1) {
1024 if (d < (MPW_MAX >> b)) {
1025 d <<= b;
1026 norm += b;
1027 }
1028 }
1029 if (dv + 1 == dvl)
1030 norm += MPW_BITS;
1031 }
1032
1033 /* --- Normalize the dividend/remainder to match --- */
1034
1035 if (norm) {
1036 mpx_lsl(rv, rvl, rv, rvl, norm);
1037 mpx_lsl(sv, svl, dv, dvl, norm);
1038 dv = sv;
1039 dvl = svl;
1040 MPX_SHRINK(dv, dvl);
1041 }
1042
1043 MPX_SHRINK(rv, rvl);
1044 d = dvl[-1];
1045 dd = dvl[-2];
1046
1047 /* --- Work out the relative scales --- */
1048
1049 {
1050 size_t rvn = rvl - rv;
1051 size_t dvn = dvl - dv;
1052
1053 /* --- If the divisor is clearly larger, notice this --- */
1054
1055 if (dvn > rvn) {
1056 mpx_lsr(rv, rvl, rv, rvl, norm);
1057 return;
1058 }
1059
1060 scale = rvn - dvn;
1061 }
1062
1063 /* --- Calculate the most significant quotient digit --- *
1064 *
1065 * Because the divisor has its top bit set, this can only happen once. The
1066 * pointer arithmetic is a little contorted, to make sure that the
1067 * behaviour is defined.
1068 */
1069
1070 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1071 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1072 if (qvl - qv > scale)
1073 qv[scale] = 1;
1074 }
1075
1076 /* --- Now for the main loop --- */
1077
1078 {
1079 mpw *rvv = rvl - 2;
1080
1081 while (scale) {
1082 mpw q;
1083 mpd rh;
1084
1085 /* --- Get an estimate for the next quotient digit --- */
1086
1087 mpw r = rvv[1];
1088 mpw rr = rvv[0];
1089 mpw rrr = *--rvv;
1090
1091 scale--;
1092 rh = ((mpd)r << MPW_BITS) | rr;
1093 if (r == d)
1094 q = MPW_MAX;
1095 else
1096 q = MPW(rh / d);
1097
1098 /* --- Refine the estimate --- */
1099
1100 {
1101 mpd yh = (mpd)d * q;
1102 mpd yy = (mpd)dd * q;
1103 mpw yl;
1104
1105 if (yy > MPW_MAX)
1106 yh += yy >> MPW_BITS;
1107 yl = MPW(yy);
1108
1109 while (yh > rh || (yh == rh && yl > rrr)) {
1110 q--;
1111 yh -= d;
1112 if (yl < dd)
1113 yh--;
1114 yl = MPW(yl - dd);
1115 }
1116 }
1117
1118 /* --- Remove a chunk from the dividend --- */
1119
1120 {
1121 mpw *svv;
1122 const mpw *dvv;
1123 mpw mc = 0, sc = 0;
1124
1125 /* --- Calculate the size of the chunk --- *
1126 *
1127 * This does the whole job of calculating @r >> scale - qd@.
1128 */
1129
1130 for (svv = rv + scale, dvv = dv;
1131 dvv < dvl && svv < rvl;
1132 svv++, dvv++) {
1133 mpd x = (mpd)*dvv * (mpd)q + mc;
1134 mc = x >> MPW_BITS;
1135 x = (mpd)*svv - MPW(x) - sc;
1136 *svv = MPW(x);
1137 if (x >> MPW_BITS)
1138 sc = 1;
1139 else
1140 sc = 0;
1141 }
1142
1143 if (svv < rvl) {
1144 mpd x = (mpd)*svv - mc - sc;
1145 *svv++ = MPW(x);
1146 if (x >> MPW_BITS)
1147 sc = MPW_MAX;
1148 else
1149 sc = 0;
1150 while (svv < rvl)
1151 *svv++ = sc;
1152 }
1153
1154 /* --- Fix if the quotient was too large --- *
1155 *
1156 * This doesn't seem to happen very often.
1157 */
1158
1159 if (rvl[-1] > MPW_MAX / 2) {
1160 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1161 q--;
1162 }
1163 }
1164
1165 /* --- Done for another iteration --- */
1166
1167 if (qvl - qv > scale)
1168 qv[scale] = q;
1169 r = rr;
1170 rr = rrr;
1171 }
1172 }
1173
1174 /* --- Now fiddle with unnormalizing and things --- */
1175
1176 mpx_lsr(rv, rvl, rv, rvl, norm);
1177 }
1178
1179 /* --- @mpx_udivn@ --- *
1180 *
1181 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1182 * dividend)
1183 * @const mpw *rv, *rvl@ = dividend
1184 * @mpw d@ = single-precision divisor
1185 *
1186 * Returns: Remainder after divison.
1187 *
1188 * Use: Performs a single-precision division operation.
1189 */
1190
1191 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1192 {
1193 size_t i;
1194 size_t ql = qvl - qv;
1195 mpd r = 0;
1196
1197 i = rvl - rv;
1198 while (i > 0) {
1199 i--;
1200 r = (r << MPW_BITS) | rv[i];
1201 if (i < ql)
1202 qv[i] = r / d;
1203 r %= d;
1204 }
1205 return (MPW(r));
1206 }
1207
1208 /*----- Test rig ----------------------------------------------------------*/
1209
1210 #ifdef TEST_RIG
1211
1212 #include <mLib/alloc.h>
1213 #include <mLib/dstr.h>
1214 #include <mLib/quis.h>
1215 #include <mLib/testrig.h>
1216
1217 #include "mpscan.h"
1218
1219 #define ALLOC(v, vl, sz) do { \
1220 size_t _sz = (sz); \
1221 mpw *_vv = xmalloc(MPWS(_sz)); \
1222 mpw *_vvl = _vv + _sz; \
1223 (v) = _vv; \
1224 (vl) = _vvl; \
1225 } while (0)
1226
1227 #define LOAD(v, vl, d) do { \
1228 const dstr *_d = (d); \
1229 mpw *_v, *_vl; \
1230 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1231 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1232 (v) = _v; \
1233 (vl) = _vl; \
1234 } while (0)
1235
1236 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1237
1238 static void dumpbits(const char *msg, const void *pp, size_t sz)
1239 {
1240 const octet *p = pp;
1241 fputs(msg, stderr);
1242 for (; sz; sz--)
1243 fprintf(stderr, " %02x", *p++);
1244 fputc('\n', stderr);
1245 }
1246
1247 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1248 {
1249 fputs(msg, stderr);
1250 MPX_SHRINK(v, vl);
1251 while (v < vl)
1252 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1253 fputc('\n', stderr);
1254 }
1255
1256 static int chkscan(const mpw *v, const mpw *vl,
1257 const void *pp, size_t sz, int step)
1258 {
1259 mpscan mps;
1260 const octet *p = pp;
1261 unsigned bit = 0;
1262 int ok = 1;
1263
1264 mpscan_initx(&mps, v, vl);
1265 while (sz) {
1266 unsigned x = *p;
1267 int i;
1268 p += step;
1269 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1270 if (MPSCAN_BIT(&mps) != (x & 1)) {
1271 fprintf(stderr,
1272 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1273 step, bit, x & 1, MPSCAN_BIT(&mps));
1274 ok = 0;
1275 }
1276 x >>= 1;
1277 bit++;
1278 }
1279 sz--;
1280 }
1281
1282 return (ok);
1283 }
1284
1285 static int loadstore(dstr *v)
1286 {
1287 dstr d = DSTR_INIT;
1288 size_t sz = MPW_RQ(v->len) * 2, diff;
1289 mpw *m, *ml;
1290 int ok = 1;
1291
1292 dstr_ensure(&d, v->len);
1293 m = xmalloc(MPWS(sz));
1294
1295 for (diff = 0; diff < sz; diff += 5) {
1296 size_t oct;
1297
1298 ml = m + sz - diff;
1299
1300 mpx_loadl(m, ml, v->buf, v->len);
1301 if (!chkscan(m, ml, v->buf, v->len, +1))
1302 ok = 0;
1303 MPX_OCTETS(oct, m, ml);
1304 mpx_storel(m, ml, d.buf, d.sz);
1305 if (memcmp(d.buf, v->buf, oct) != 0) {
1306 dumpbits("\n*** storel failed", d.buf, d.sz);
1307 ok = 0;
1308 }
1309
1310 mpx_loadb(m, ml, v->buf, v->len);
1311 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1312 ok = 0;
1313 MPX_OCTETS(oct, m, ml);
1314 mpx_storeb(m, ml, d.buf, d.sz);
1315 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1316 dumpbits("\n*** storeb failed", d.buf, d.sz);
1317 ok = 0;
1318 }
1319 }
1320
1321 if (!ok)
1322 dumpbits("input data", v->buf, v->len);
1323
1324 free(m);
1325 dstr_destroy(&d);
1326 return (ok);
1327 }
1328
1329 static int twocl(dstr *v)
1330 {
1331 dstr d = DSTR_INIT;
1332 mpw *m, *ml;
1333 size_t sz;
1334 int ok = 1;
1335
1336 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1337 dstr_ensure(&d, sz);
1338
1339 sz = MPW_RQ(sz);
1340 m = xmalloc(MPWS(sz));
1341 ml = m + sz;
1342
1343 mpx_loadl(m, ml, v[0].buf, v[0].len);
1344 mpx_storel2cn(m, ml, d.buf, v[1].len);
1345 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1346 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1347 ok = 0;
1348 }
1349
1350 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1351 mpx_storel(m, ml, d.buf, v[0].len);
1352 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1353 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1354 ok = 0;
1355 }
1356
1357 if (!ok) {
1358 dumpbits("pos", v[0].buf, v[0].len);
1359 dumpbits("neg", v[1].buf, v[1].len);
1360 }
1361
1362 free(m);
1363 dstr_destroy(&d);
1364
1365 return (ok);
1366 }
1367
1368 static int twocb(dstr *v)
1369 {
1370 dstr d = DSTR_INIT;
1371 mpw *m, *ml;
1372 size_t sz;
1373 int ok = 1;
1374
1375 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1376 dstr_ensure(&d, sz);
1377
1378 sz = MPW_RQ(sz);
1379 m = xmalloc(MPWS(sz));
1380 ml = m + sz;
1381
1382 mpx_loadb(m, ml, v[0].buf, v[0].len);
1383 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1384 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1385 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1386 ok = 0;
1387 }
1388
1389 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1390 mpx_storeb(m, ml, d.buf, v[0].len);
1391 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1392 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1393 ok = 0;
1394 }
1395
1396 if (!ok) {
1397 dumpbits("pos", v[0].buf, v[0].len);
1398 dumpbits("neg", v[1].buf, v[1].len);
1399 }
1400
1401 free(m);
1402 dstr_destroy(&d);
1403
1404 return (ok);
1405 }
1406
1407 static int lsl(dstr *v)
1408 {
1409 mpw *a, *al;
1410 int n = *(int *)v[1].buf;
1411 mpw *c, *cl;
1412 mpw *d, *dl;
1413 int ok = 1;
1414
1415 LOAD(a, al, &v[0]);
1416 LOAD(c, cl, &v[2]);
1417 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1418
1419 mpx_lsl(d, dl, a, al, n);
1420 if (!mpx_ueq(d, dl, c, cl)) {
1421 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1422 dumpmp(" a", a, al);
1423 dumpmp("expected", c, cl);
1424 dumpmp(" result", d, dl);
1425 ok = 0;
1426 }
1427
1428 free(a); free(c); free(d);
1429 return (ok);
1430 }
1431
1432 static int lsr(dstr *v)
1433 {
1434 mpw *a, *al;
1435 int n = *(int *)v[1].buf;
1436 mpw *c, *cl;
1437 mpw *d, *dl;
1438 int ok = 1;
1439
1440 LOAD(a, al, &v[0]);
1441 LOAD(c, cl, &v[2]);
1442 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1443
1444 mpx_lsr(d, dl, a, al, n);
1445 if (!mpx_ueq(d, dl, c, cl)) {
1446 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1447 dumpmp(" a", a, al);
1448 dumpmp("expected", c, cl);
1449 dumpmp(" result", d, dl);
1450 ok = 0;
1451 }
1452
1453 free(a); free(c); free(d);
1454 return (ok);
1455 }
1456
1457 static int uadd(dstr *v)
1458 {
1459 mpw *a, *al;
1460 mpw *b, *bl;
1461 mpw *c, *cl;
1462 mpw *d, *dl;
1463 int ok = 1;
1464
1465 LOAD(a, al, &v[0]);
1466 LOAD(b, bl, &v[1]);
1467 LOAD(c, cl, &v[2]);
1468 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1469
1470 mpx_uadd(d, dl, a, al, b, bl);
1471 if (!mpx_ueq(d, dl, c, cl)) {
1472 fprintf(stderr, "\n*** uadd failed\n");
1473 dumpmp(" a", a, al);
1474 dumpmp(" b", b, bl);
1475 dumpmp("expected", c, cl);
1476 dumpmp(" result", d, dl);
1477 ok = 0;
1478 }
1479
1480 free(a); free(b); free(c); free(d);
1481 return (ok);
1482 }
1483
1484 static int usub(dstr *v)
1485 {
1486 mpw *a, *al;
1487 mpw *b, *bl;
1488 mpw *c, *cl;
1489 mpw *d, *dl;
1490 int ok = 1;
1491
1492 LOAD(a, al, &v[0]);
1493 LOAD(b, bl, &v[1]);
1494 LOAD(c, cl, &v[2]);
1495 ALLOC(d, dl, al - a);
1496
1497 mpx_usub(d, dl, a, al, b, bl);
1498 if (!mpx_ueq(d, dl, c, cl)) {
1499 fprintf(stderr, "\n*** usub failed\n");
1500 dumpmp(" a", a, al);
1501 dumpmp(" b", b, bl);
1502 dumpmp("expected", c, cl);
1503 dumpmp(" result", d, dl);
1504 ok = 0;
1505 }
1506
1507 free(a); free(b); free(c); free(d);
1508 return (ok);
1509 }
1510
1511 static int umul(dstr *v)
1512 {
1513 mpw *a, *al;
1514 mpw *b, *bl;
1515 mpw *c, *cl;
1516 mpw *d, *dl;
1517 int ok = 1;
1518
1519 LOAD(a, al, &v[0]);
1520 LOAD(b, bl, &v[1]);
1521 LOAD(c, cl, &v[2]);
1522 ALLOC(d, dl, (al - a) + (bl - b));
1523
1524 mpx_umul(d, dl, a, al, b, bl);
1525 if (!mpx_ueq(d, dl, c, cl)) {
1526 fprintf(stderr, "\n*** umul failed\n");
1527 dumpmp(" a", a, al);
1528 dumpmp(" b", b, bl);
1529 dumpmp("expected", c, cl);
1530 dumpmp(" result", d, dl);
1531 ok = 0;
1532 }
1533
1534 free(a); free(b); free(c); free(d);
1535 return (ok);
1536 }
1537
1538 static int usqr(dstr *v)
1539 {
1540 mpw *a, *al;
1541 mpw *c, *cl;
1542 mpw *d, *dl;
1543 int ok = 1;
1544
1545 LOAD(a, al, &v[0]);
1546 LOAD(c, cl, &v[1]);
1547 ALLOC(d, dl, 2 * (al - a));
1548
1549 mpx_usqr(d, dl, a, al);
1550 if (!mpx_ueq(d, dl, c, cl)) {
1551 fprintf(stderr, "\n*** usqr failed\n");
1552 dumpmp(" a", a, al);
1553 dumpmp("expected", c, cl);
1554 dumpmp(" result", d, dl);
1555 ok = 0;
1556 }
1557
1558 free(a); free(c); free(d);
1559 return (ok);
1560 }
1561
1562 static int udiv(dstr *v)
1563 {
1564 mpw *a, *al;
1565 mpw *b, *bl;
1566 mpw *q, *ql;
1567 mpw *r, *rl;
1568 mpw *qq, *qql;
1569 mpw *s, *sl;
1570 int ok = 1;
1571
1572 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1573 LOAD(b, bl, &v[1]);
1574 LOAD(q, ql, &v[2]);
1575 LOAD(r, rl, &v[3]);
1576 ALLOC(qq, qql, al - a);
1577 ALLOC(s, sl, (bl - b) + 1);
1578
1579 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1580 if (!mpx_ueq(qq, qql, q, ql) ||
1581 !mpx_ueq(a, al, r, rl)) {
1582 fprintf(stderr, "\n*** udiv failed\n");
1583 dumpmp(" divisor", b, bl);
1584 dumpmp("expect r", r, rl);
1585 dumpmp("result r", a, al);
1586 dumpmp("expect q", q, ql);
1587 dumpmp("result q", qq, qql);
1588 ok = 0;
1589 }
1590
1591 free(a); free(b); free(r); free(q); free(s); free(qq);
1592 return (ok);
1593 }
1594
1595 static test_chunk defs[] = {
1596 { "load-store", loadstore, { &type_hex, 0 } },
1597 { "2cl", twocl, { &type_hex, &type_hex, } },
1598 { "2cb", twocb, { &type_hex, &type_hex, } },
1599 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1600 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1601 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1602 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1603 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1604 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1605 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1606 { 0, 0, { 0 } }
1607 };
1608
1609 int main(int argc, char *argv[])
1610 {
1611 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1612 return (0);
1613 }
1614
1615 #endif
1616
1617 /*----- That's all, folks -------------------------------------------------*/