Table for driving key data extraction.
[u/mdw/catacomb] / dsarand.c
1 /* -*-c-*-
2 *
3 * $Id: dsarand.c,v 1.1 1999/12/22 15:53:12 mdw Exp $
4 *
5 * Random number generator for DSA
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: dsarand.c,v $
33 * Revision 1.1 1999/12/22 15:53:12 mdw
34 * Random number generator for finding DSA parameters.
35 *
36 */
37
38 /*----- Header files ------------------------------------------------------*/
39
40 #include <stdarg.h>
41 #include <string.h>
42
43 #include <mLib/bits.h>
44 #include <mLib/sub.h>
45
46 #include "dsarand.h"
47 #include "grand.h"
48 #include "sha.h"
49
50 /*----- Main code ---------------------------------------------------------*/
51
52 /* --- @STEP@ --- *
53 *
54 * Arguments: @dsarand *d@ = pointer to context
55 *
56 * Use: Increments the buffer by one, interpreting it as a big-endian
57 * integer. Carries outside the integer are discarded.
58 */
59
60 #define STEP(d) do { \
61 dsarand *_d = (d); \
62 octet *_p = _d->p; \
63 octet *_q = _p + _d->sz; \
64 unsigned _c = 1; \
65 while (_c && _q > _p) { \
66 _c += *--_q; \
67 *_q = U8(_c); \
68 _c >>= 8; \
69 } \
70 } while (0)
71
72 /* --- @dsarand_init@ --- *
73 *
74 * Arguments: @dsarand *d@ = pointer to context
75 * @const void *p@ = pointer to seed buffer
76 * @size_t sz@ = size of the buffer
77 *
78 * Returns: ---
79 *
80 * Use: Initializes a DSA random number generator.
81 */
82
83 void dsarand_init(dsarand *d, const void *p, size_t sz)
84 {
85 d->p = xmalloc(sz);
86 d->sz = sz;
87 if (p)
88 memcpy(d->p, p, sz);
89 }
90
91 /* --- @dsarand_reseed@ --- *
92 *
93 * Arguments: @dsarand *d@ = pointer to context
94 * @const void *p@ = pointer to seed buffer
95 * @size_t sz@ = size of the buffer
96 *
97 * Returns: ---
98 *
99 * Use: Initializes a DSA random number generator.
100 */
101
102 void dsarand_reseed(dsarand *d, const void *p, size_t sz)
103 {
104 free(d->p);
105 d->p = xmalloc(sz);
106 d->sz = sz;
107 d->passes = 1;
108 if (p)
109 memcpy(d->p, p, sz);
110 }
111
112 /* --- @dsarand_destroy@ --- *
113 *
114 * Arguments: @dsarand *d@ = pointer to context
115 *
116 * Returns: ---
117 *
118 * Use: Disposes of a DSA random number generation context.
119 */
120
121 void dsarand_destroy(dsarand *d)
122 {
123 free(d->p);
124 }
125
126 /* --- @dsarand_fill@ --- *
127 *
128 * Arguments: @dsarand *d@ = pointer to context
129 * @void *p@ = pointer to output buffer
130 * @size_t sz@ = size of output buffer
131 *
132 * Returns: ---
133 *
134 * Use: Fills an output buffer with pseudorandom data.
135 *
136 * Let %$p$% be the numerical value of the input buffer, and let
137 * %$b$% be the number of bytes required. Let
138 * %$z = \lceil b / 20 \rceil%$ be the number of SHA outputs
139 * required. Then the output of pass %$n$% is
140 *
141 * %$P_n = \sum_{0 \le i < z} 2^{160i} SHA(p + nz + i)$%
142 * %${} \bmod 2^{8b}$%
143 *
144 * and the actual result in the output buffer is the XOR of all
145 * of the output passes.
146 *
147 * The DSA procedure for choosing @q@ involves two passes with
148 * %$z = 1$%; the procedure for choosing @p@ involves one pass
149 * with larger %$z$%. This generalization of the DSA generation
150 * procedure is my own invention but it seems relatively sound.
151 */
152
153 void dsarand_fill(dsarand *d, void *p, size_t sz)
154 {
155 octet *q = p;
156 unsigned n = d->passes;
157
158 /* --- Write out the first pass --- *
159 *
160 * This can write directly to the output buffer, so it's done differently
161 * from the latter passes.
162 */
163
164 {
165 size_t o = sz;
166
167 while (o) {
168 sha_ctx h;
169
170 /* --- Hash the input buffer --- */
171
172 sha_init(&h);
173 sha_hash(&h, d->p, d->sz);
174
175 /* --- If enough space, extract the hash output directly --- */
176
177 if (o >= SHA_HASHSZ) {
178 o -= SHA_HASHSZ;
179 sha_done(&h, q + o);
180 }
181
182 /* --- Otherwise take the hash result out of line and copy it --- */
183
184 else {
185 octet hash[SHA_HASHSZ];
186 sha_done(&h, hash);
187 memcpy(q, hash + (SHA_HASHSZ - o), o);
188 o = 0;
189 }
190
191 /* --- Step the input buffer --- */
192
193 STEP(d);
194 }
195
196 /* --- Another pass has been done --- */
197
198 n--;
199 }
200
201 /* --- Write out subsequent passes --- *
202 *
203 * The hash output has to be done offline, so this is slightly easier.
204 */
205
206 while (n) {
207 size_t o = sz;
208
209 while (o) {
210 sha_ctx h;
211 octet hash[SHA_HASHSZ];
212 size_t n;
213 octet *pp, *qq;
214
215 /* --- Hash the input buffer --- */
216
217 sha_init(&h);
218 sha_hash(&h, d->p, d->sz);
219 sha_done(&h, hash);
220
221 /* --- Work out how much output is wanted --- */
222
223 n = SHA_HASHSZ;
224 if (n > o)
225 n = o;
226 o -= n;
227
228 /* --- XOR the data out --- */
229
230 for (pp = hash + (SHA_HASHSZ - n), qq = q + o;
231 pp < hash + SHA_HASHSZ; pp++, qq++)
232 *qq ^= *pp;
233
234 /* --- Step the input buffer --- */
235
236 STEP(d);
237 }
238
239 /* --- Another pass is done --- */
240
241 n--;
242 }
243 }
244
245 /*----- Generic pseudorandom-number generator interface -------------------*/
246
247 static const grand_ops gops;
248
249 typedef struct gctx {
250 grand r;
251 dsarand d;
252 } gctx;
253
254 static void gdestroy(grand *r)
255 {
256 gctx *g = (gctx *)r;
257 dsarand_destroy(&g->d);
258 DESTROY(g);
259 }
260
261 static int gmisc(grand *r, unsigned op, ...)
262 {
263 gctx *g = (gctx *)r;
264 va_list ap;
265 int rc = 0;
266 va_start(ap, op);
267
268 switch (op) {
269 case GRAND_CHECK:
270 switch (va_arg(ap, unsigned)) {
271 case GRAND_CHECK:
272 case GRAND_SEEDBLOCK:
273 case GRAND_SEEDRAND:
274 case DSARAND_PASSES:
275 rc = 1;
276 break;
277 default:
278 rc = 0;
279 break;
280 }
281 break;
282 case GRAND_SEEDBLOCK: {
283 const void *p = va_arg(ap, const void *);
284 size_t sz = va_arg(ap, size_t);
285 dsarand_reseed(&g->d, p, sz);
286 } break;
287 case GRAND_SEEDRAND: {
288 grand *rr = va_arg(ap, grand *);
289 rr->ops->fill(rr, g->d.p, g->d.sz);
290 } break;
291 case DSARAND_PASSES:
292 g->d.passes = va_arg(ap, unsigned);
293 break;
294 default:
295 GRAND_BADOP;
296 break;
297 }
298
299 va_end(ap);
300 return (rc);
301 }
302
303 static void gfill(grand *r, void *p, size_t sz)
304 {
305 gctx *g = (gctx *)r;
306 dsarand_fill(&g->d, p, sz);
307 }
308
309 static const grand_ops gops = {
310 "dsarand",
311 0,
312 gmisc, gdestroy,
313 grand_word, grand_byte, grand_word, grand_range, gfill
314 };
315
316 /* --- @dsarand_create@ --- *
317 *
318 * Arguments: @const void *p@ = pointer to seed buffer
319 * @size_t sz@ = size of seed buffer
320 *
321 * Returns: Pointer to a generic generator.
322 *
323 * Use: Constructs a generic generator interface over a Catacomb
324 * entropy pool generator.
325 */
326
327 grand *dsarand_create(const void *p, size_t sz)
328 {
329 gctx *g = CREATE(gctx);
330 g->r.ops = &gops;
331 dsarand_init(&g->d, p, sz);
332 return (&g->r);
333 }
334
335 /*----- That's all, folks -------------------------------------------------*/