Add an internal-representation no-op function.
[u/mdw/catacomb] / gfx-kmul.c
1 /* -*-c-*-
2 *
3 * $Id: gfx-kmul.c,v 1.1 2000/10/08 15:49:37 mdw Exp $
4 *
5 * Karatsuba's multiplication algorithm on binary polynomials
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: gfx-kmul.c,v $
33 * Revision 1.1 2000/10/08 15:49:37 mdw
34 * First glimmerings of binary polynomial arithmetic.
35 *
36 */
37
38 /*----- Header files ------------------------------------------------------*/
39
40 #include <assert.h>
41 #include <stdio.h>
42
43 #include "gfx.h"
44 #include "karatsuba.h"
45
46 /*----- Tweakables --------------------------------------------------------*/
47
48 #ifdef TEST_RIG
49 # undef GFK_THRESH
50 # define GFK_THRESH 1
51 #endif
52
53 /*----- Main code ---------------------------------------------------------*/
54
55 /* --- @gfx_kmul@ --- *
56 *
57 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
58 * @const mpw *av, *avl@ = pointer to first argument
59 * @const mpw *bv, *bvl@ = pointer to second argument
60 * @mpw *sv, *svl@ = pointer to scratch workspace
61 *
62 * Returns: ---
63 *
64 * Use: Multiplies two binary polynomials using Karatsuba's
65 * algorithm. This is rather faster than traditional long
66 * multiplication (e.g., @gfx_umul@) on polynomials with large
67 * degree, although more expensive on small ones.
68 *
69 * The destination must be twice as large as the larger
70 * argument. The scratch space must be twice as large as the
71 * larger argument.
72 */
73
74 void gfx_kmul(mpw *dv, mpw *dvl,
75 const mpw *av, const mpw *avl,
76 const mpw *bv, const mpw *bvl,
77 mpw *sv, mpw *svl)
78 {
79 const mpw *avm, *bvm;
80 size_t m;
81
82 /* --- Dispose of easy cases to @mpx_umul@ --- *
83 *
84 * Karatsuba is only a win on large numbers, because of all the
85 * recursiveness and bookkeeping. The recursive calls make a quick check
86 * to see whether to bottom out to @gfx_umul@ which should help quite a
87 * lot, but sometimes the only way to know is to make sure...
88 */
89
90 MPX_SHRINK(av, avl);
91 MPX_SHRINK(bv, bvl);
92
93 if (avl - av <= GFK_THRESH || bvl - bv <= GFK_THRESH) {
94 gfx_mul(dv, dvl, av, avl, bv, bvl);
95 return;
96 }
97
98 /* --- How the algorithm works --- *
99 *
100 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding,
101 * %$AB = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because
102 * I've got four multiplications, each four times easier than the one I
103 * started with. However, note that I can rewrite the coefficient of %$b$%
104 * as %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
105 * I've already calculated, and that leaves only one more multiplication to
106 * do. So now I have three multiplications, each four times easier, and
107 * that's a win.
108 */
109
110 /* --- First things --- *
111 *
112 * Sort out where to break the factors in half. I'll choose the midpoint
113 * of the larger one, since this minimizes the amount of work I have to do
114 * most effectively.
115 */
116
117 if (avl - av > bvl - bv) {
118 m = (avl - av + 1) >> 1;
119 avm = av + m;
120 if (bvl - bv > m)
121 bvm = bv + m;
122 else
123 bvm = bvl;
124 } else {
125 m = (bvl - bv + 1) >> 1;
126 bvm = bv + m;
127 if (avl - av > m)
128 avm = av + m;
129 else
130 avm = avl;
131 }
132
133 assert(((void)"Destination too small for Karatsuba gf-multiply",
134 dvl - dv >= 4 * m));
135 assert(((void)"Not enough workspace for Karatsuba gf-multiply",
136 svl - sv >= 4 * m));
137
138 /* --- Sort out the middle term --- */
139
140 {
141 mpw *bsv = sv + m, *ssv = bsv + m;
142 mpw *rdv = dv + m, *rdvl = rdv + 2 * m;
143
144 UXOR2(sv, bsv, av, avm, avm, avl);
145 UXOR2(bsv, ssv, bv, bvm, bvm, bvl);
146 if (m > GFK_THRESH)
147 gfx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
148 else
149 gfx_mul(rdv, rdvl, sv, bsv, bsv, ssv);
150 }
151
152 /* --- Sort out the other two terms --- */
153
154 {
155 mpw *svm = sv + m, *ssv = svm + m;
156 mpw *tdv = dv + m;
157 mpw *rdv = tdv + m;
158
159 if (avl == avm || bvl == bvm)
160 MPX_ZERO(rdv + m, dvl);
161 else {
162 if (m > GFK_THRESH)
163 gfx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
164 else
165 gfx_mul(sv, ssv, avm, avl, bvm, bvl);
166 MPX_COPY(rdv + m, dvl, svm, ssv);
167 UXOR(rdv, sv, svm);
168 UXOR(tdv, sv, ssv);
169 }
170
171 if (m > GFK_THRESH)
172 gfx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
173 else
174 gfx_mul(sv, ssv, av, avm, bv, bvm);
175 MPX_COPY(dv, tdv, sv, svm);
176 UXOR(tdv, sv, ssv);
177 UXOR(tdv, svm, ssv);
178 }
179 }
180
181 /*----- Test rig ----------------------------------------------------------*/
182
183 #ifdef TEST_RIG
184
185 #include <mLib/alloc.h>
186 #include <mLib/testrig.h>
187
188 #define ALLOC(v, vl, sz) do { \
189 size_t _sz = (sz); \
190 mpw *_vv = xmalloc(MPWS(_sz)); \
191 mpw *_vvl = _vv + _sz; \
192 (v) = _vv; \
193 (vl) = _vvl; \
194 } while (0)
195
196 #define LOAD(v, vl, d) do { \
197 const dstr *_d = (d); \
198 mpw *_v, *_vl; \
199 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
200 mpx_loadb(_v, _vl, _d->buf, _d->len); \
201 (v) = _v; \
202 (vl) = _vl; \
203 } while (0)
204
205 #define MAX(x, y) ((x) > (y) ? (x) : (y))
206
207 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
208 {
209 fputs(msg, stderr);
210 MPX_SHRINK(v, vl);
211 while (v < vl)
212 fprintf(stderr, " %08lx", (unsigned long)*--vl);
213 fputc('\n', stderr);
214 }
215
216 static int mul(dstr *v)
217 {
218 mpw *a, *al;
219 mpw *b, *bl;
220 mpw *c, *cl;
221 mpw *d, *dl;
222 mpw *s, *sl;
223 size_t m;
224 int ok = 1;
225
226 LOAD(a, al, &v[0]);
227 LOAD(b, bl, &v[1]);
228 LOAD(c, cl, &v[2]);
229 m = MAX(al - a, bl - b) + 1;
230 ALLOC(d, dl, 2 * m);
231 ALLOC(s, sl, 2 * m);
232
233 gfx_kmul(d, dl, a, al, b, bl, s, sl);
234 if (!mpx_ueq(d, dl, c, cl)) {
235 fprintf(stderr, "\n*** mul failed\n");
236 dumpmp(" a", a, al);
237 dumpmp(" b", b, bl);
238 dumpmp("expected", c, cl);
239 dumpmp(" result", d, dl);
240 ok = 0;
241 }
242
243 free(a); free(b); free(c); free(d); free(s);
244 return (ok);
245 }
246
247 static test_chunk defs[] = {
248 { "mul", mul, { &type_hex, &type_hex, &type_hex, 0 } },
249 { 0, 0, { 0 } }
250 };
251
252 int main(int argc, char *argv[])
253 {
254 test_run(argc, argv, defs, SRCDIR"/tests/gfx");
255 return (0);
256 }
257
258 #endif
259
260 /*----- That's all, folks -------------------------------------------------*/