1981a285fb0ffe7f0cd0d1bf8a30c7f893a3e455
[u/mdw/catacomb] / mpx-kmul.c
1 /* -*-c-*-
2 *
3 * $Id: mpx-kmul.c,v 1.8 2002/10/09 00:36:03 mdw Exp $
4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
33 * Revision 1.8 2002/10/09 00:36:03 mdw
34 * Fix bounds on workspace for Karatsuba operations.
35 *
36 * Revision 1.7 2000/10/08 15:48:35 mdw
37 * Rename Karatsuba constants now that we have @gfx_kmul@ too.
38 *
39 * Revision 1.6 2000/10/08 12:11:01 mdw
40 * Use @mpx_ueq@ instead of @MPX_UCMP@.
41 *
42 * Revision 1.5 2000/07/29 17:04:02 mdw
43 * Remove useless header `mpscan.h'.
44 *
45 * Revision 1.4 2000/06/17 11:42:11 mdw
46 * Moved the Karatsuba macros into a separate file for better sharing.
47 * Fixed some comments.
48 *
49 * Revision 1.3 1999/12/13 15:35:01 mdw
50 * Simplify and improve.
51 *
52 * Revision 1.2 1999/12/11 10:58:02 mdw
53 * Remove tweakable comments.
54 *
55 * Revision 1.1 1999/12/10 23:23:51 mdw
56 * Karatsuba-Ofman multiplication algorithm.
57 *
58 */
59
60 /*----- Header files ------------------------------------------------------*/
61
62 #include <assert.h>
63 #include <stdio.h>
64
65 #include "mpx.h"
66 #include "karatsuba.h"
67
68 /*----- Tweakables --------------------------------------------------------*/
69
70 #ifdef TEST_RIG
71 # undef MPK_THRESH
72 # define MPK_THRESH 4 /* Smallest possible correct value */
73 #endif
74
75 /*----- Main code ---------------------------------------------------------*/
76
77 /* --- @mpx_kmul@ --- *
78 *
79 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
80 * @const mpw *av, *avl@ = pointer to first argument
81 * @const mpw *bv, *bvl@ = pointer to second argument
82 * @mpw *sv, *svl@ = pointer to scratch workspace
83 *
84 * Returns: ---
85 *
86 * Use: Multiplies two multiprecision integers using Karatsuba's
87 * algorithm. This is rather faster than traditional long
88 * multiplication (e.g., @mpx_umul@) on large numbers, although
89 * more expensive on small ones.
90 *
91 * The destination must be three times as large as the larger
92 * argument. The scratch space must be five times as large as
93 * the larger argument.
94 */
95
96 void mpx_kmul(mpw *dv, mpw *dvl,
97 const mpw *av, const mpw *avl,
98 const mpw *bv, const mpw *bvl,
99 mpw *sv, mpw *svl)
100 {
101 const mpw *avm, *bvm;
102 size_t m;
103
104 /* --- Dispose of easy cases to @mpx_umul@ --- *
105 *
106 * Karatsuba is only a win on large numbers, because of all the
107 * recursiveness and bookkeeping. The recursive calls make a quick check
108 * to see whether to bottom out to @mpx_umul@ which should help quite a
109 * lot, but sometimes the only way to know is to make sure...
110 */
111
112 MPX_SHRINK(av, avl);
113 MPX_SHRINK(bv, bvl);
114
115 if (avl - av <= MPK_THRESH || bvl - bv <= MPK_THRESH) {
116 mpx_umul(dv, dvl, av, avl, bv, bvl);
117 return;
118 }
119
120 /* --- How the algorithm works --- *
121 *
122 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding,
123 * %$AB = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because
124 * I've got four multiplications, each four times easier than the one I
125 * started with. However, note that I can rewrite the coefficient of %$b$%
126 * as %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
127 * I've already calculated, and that leaves only one more multiplication to
128 * do. So now I have three multiplications, each four times easier, and
129 * that's a win.
130 */
131
132 /* --- First things --- *
133 *
134 * Sort out where to break the factors in half. I'll choose the midpoint
135 * of the larger one, since this minimizes the amount of work I have to do
136 * most effectively.
137 */
138
139 if (avl - av > bvl - bv) {
140 m = (avl - av + 1) >> 1;
141 avm = av + m;
142 if (bvl - bv > m)
143 bvm = bv + m;
144 else
145 bvm = bvl;
146 } else {
147 m = (bvl - bv + 1) >> 1;
148 bvm = bv + m;
149 if (avl - av > m)
150 avm = av + m;
151 else
152 avm = avl;
153 }
154
155 /* --- Sort out the middle term --- */
156
157 {
158 mpw *bsv = sv + m + 1, *ssv = bsv + m + 1;
159 mpw *rdv = dv + m, *rdvl = rdv + 2 * (m + 2);
160
161 assert(rdvl < dvl);
162 assert(ssv < svl);
163 UADD2(sv, bsv, av, avm, avm, avl);
164 UADD2(bsv, ssv, bv, bvm, bvm, bvl);
165 if (m > MPK_THRESH)
166 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
167 else
168 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
169 }
170
171 /* --- Sort out the other two terms --- */
172
173 {
174 mpw *svm = sv + m, *svn = svm + m, *ssv = svn + 4;
175 mpw *tdv = dv + m;
176 mpw *rdv = tdv + m;
177
178 if (avl == avm || bvl == bvm)
179 MPX_ZERO(rdv + m + 1, dvl);
180 else {
181 if (m > MPK_THRESH)
182 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
183 else
184 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
185 MPX_COPY(rdv + m + 1, dvl, svm + 1, svn);
186 UADD(rdv, sv, svm + 1);
187 USUB(tdv, sv, svn);
188 }
189
190 if (m > MPK_THRESH)
191 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
192 else
193 mpx_umul(sv, ssv, av, avm, bv, bvm);
194 MPX_COPY(dv, tdv, sv, svm);
195 USUB(tdv, sv, svn);
196 UADD(tdv, svm, svn);
197 }
198 }
199
200 /*----- Test rig ----------------------------------------------------------*/
201
202 #ifdef TEST_RIG
203
204 #include <mLib/alloc.h>
205 #include <mLib/testrig.h>
206
207 #define ALLOC(v, vl, sz) do { \
208 size_t _sz = (sz); \
209 mpw *_vv = xmalloc(MPWS(_sz)); \
210 mpw *_vvl = _vv + _sz; \
211 (v) = _vv; \
212 (vl) = _vvl; \
213 } while (0)
214
215 #define LOAD(v, vl, d) do { \
216 const dstr *_d = (d); \
217 mpw *_v, *_vl; \
218 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
219 mpx_loadb(_v, _vl, _d->buf, _d->len); \
220 (v) = _v; \
221 (vl) = _vl; \
222 } while (0)
223
224 #define MAX(x, y) ((x) > (y) ? (x) : (y))
225
226 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
227 {
228 fputs(msg, stderr);
229 MPX_SHRINK(v, vl);
230 while (v < vl)
231 fprintf(stderr, " %08lx", (unsigned long)*--vl);
232 fputc('\n', stderr);
233 }
234
235 static int umul(dstr *v)
236 {
237 mpw *a, *al;
238 mpw *b, *bl;
239 mpw *c, *cl;
240 mpw *d, *dl;
241 mpw *s, *sl;
242 size_t m;
243 int ok = 1;
244
245 LOAD(a, al, &v[0]);
246 LOAD(b, bl, &v[1]);
247 LOAD(c, cl, &v[2]);
248 m = MAX(al - a, bl - b) + 1;
249 ALLOC(d, dl, 3 * m);
250 ALLOC(s, sl, 5 * m);
251
252 mpx_kmul(d, dl, a, al, b, bl, s, sl);
253 if (!mpx_ueq(d, dl, c, cl)) {
254 fprintf(stderr, "\n*** umul failed\n");
255 dumpmp(" a", a, al);
256 dumpmp(" b", b, bl);
257 dumpmp("expected", c, cl);
258 dumpmp(" result", d, dl);
259 ok = 0;
260 }
261
262 free(a); free(b); free(c); free(d); free(s);
263 return (ok);
264 }
265
266 static test_chunk defs[] = {
267 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
268 { 0, 0, { 0 } }
269 };
270
271 int main(int argc, char *argv[])
272 {
273 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
274 return (0);
275 }
276
277 #endif
278
279 /*----- That's all, folks -------------------------------------------------*/