Rearrange the file tree.
[u/mdw/catacomb] / symm / square-mktab.c
1 /* -*-c-*-
2 *
3 * Build precomputed tables for the Square block cipher
4 *
5 * (c) 2000 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <assert.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33
34 #include <mLib/bits.h>
35
36 /*----- Magic variables ---------------------------------------------------*/
37
38 static octet s[256], si[256];
39 static uint32 t[4][256], ti[4][256];
40 static uint32 u[4][256];
41 static octet rc[32];
42
43 /*----- Main code ---------------------------------------------------------*/
44
45 /* --- @mul@ --- *
46 *
47 * Arguments: @unsigned x, y@ = polynomials over %$\gf{2^8}$%
48 * @unsigned m@ = modulus
49 *
50 * Returns: The product of two polynomials.
51 *
52 * Use: Computes a product of polynomials, quite slowly.
53 */
54
55 static unsigned mul(unsigned x, unsigned y, unsigned m)
56 {
57 unsigned a = 0;
58 unsigned i;
59
60 for (i = 0; i < 8; i++) {
61 if (y & 1)
62 a ^= x;
63 y >>= 1;
64 x <<= 1;
65 if (x & 0x100)
66 x ^= m;
67 }
68
69 return (a);
70 }
71
72 /* --- @sbox@ --- *
73 *
74 * Build the S-box.
75 *
76 * This is built from inversion in the multiplicative group of
77 * %$\gf{2^8}[x]/(p(x))$%, where %$p(x) = x^8+x^7+x^6+x^5+x^4+x^2+1$%,
78 * followed by an affine transformation treating inputs as vectors over
79 * %$\gf{2}$%. The result is a horrible function.
80 *
81 * The inversion is done slightly sneakily, by building log and antilog
82 * tables. Let %$a$% be an element of the finite field. If the inverse of
83 * %$a$% is %$a^{-1}$%, then %$\log a a^{-1} = 0$%. Hence
84 * %$\log a = -\log a^{-1}$%. This saves fiddling about with Euclidean
85 * algorithm.
86 */
87
88 #define S_MOD 0x1f5
89
90 static void sbox(void)
91 {
92 octet log[256], alog[256];
93 unsigned x;
94 unsigned i;
95 unsigned g;
96
97 /* --- Find a suitable generator, and build log tables --- */
98
99 log[0] = 0;
100 for (g = 2; g < 256; g++) {
101 x = 1;
102 for (i = 0; i < 256; i++) {
103 log[x] = i;
104 alog[i] = x;
105 x = mul(x, g, S_MOD);
106 if (x == 1 && i != 254)
107 goto again;
108 }
109 goto done;
110 again:;
111 }
112 fprintf(stderr, "couldn't find generator\n");
113 exit(EXIT_FAILURE);
114 done:;
115
116 /* --- Now grind through and do the affine transform --- *
117 *
118 * The matrix multiply is an AND and a parity op. The add is an XOR.
119 */
120
121 for (i = 0; i < 256; i++) {
122 unsigned j;
123 octet m[] = { 0xd6, 0x7b, 0x3d, 0x1f, 0x0f, 0x05, 0x03, 0x01 };
124 unsigned v = i ? alog[255 - log[i]] : 0;
125
126 assert(i == 0 || mul(i, v, S_MOD) == 1);
127
128 x = 0;
129 for (j = 0; j < 8; j++) {
130 unsigned r;
131 r = v & m[j];
132 r = (r >> 4) ^ r;
133 r = (r >> 2) ^ r;
134 r = (r >> 1) ^ r;
135 x = (x << 1) | (r & 1);
136 }
137 x ^= 0xb1;
138 s[i] = x;
139 si[x] = i;
140 }
141 }
142
143 /* --- @tbox@ --- *
144 *
145 * Construct the t tables for doing the round function efficiently.
146 */
147
148 static void tbox(void)
149 {
150 unsigned i;
151
152 for (i = 0; i < 256; i++) {
153 uint32 a, b, c, d;
154 uint32 w;
155
156 /* --- Build a forwards t-box entry --- */
157
158 a = s[i];
159 b = a << 1; if (b & 0x100) b ^= S_MOD;
160 c = a ^ b;
161 w = (b << 0) | (a << 8) | (a << 16) | (c << 24);
162 t[0][i] = w;
163 t[1][i] = ROL32(w, 8);
164 t[2][i] = ROL32(w, 16);
165 t[3][i] = ROL32(w, 24);
166
167 /* --- Build a backwards t-box entry --- */
168
169 a = mul(si[i], 0x0e, S_MOD);
170 b = mul(si[i], 0x09, S_MOD);
171 c = mul(si[i], 0x0d, S_MOD);
172 d = mul(si[i], 0x0b, S_MOD);
173 w = (a << 0) | (b << 8) | (c << 16) | (d << 24);
174 ti[0][i] = w;
175 ti[1][i] = ROL32(w, 8);
176 ti[2][i] = ROL32(w, 16);
177 ti[3][i] = ROL32(w, 24);
178 }
179 }
180
181 /* --- @ubox@ --- *
182 *
183 * Construct the tables for performing the key schedule.
184 */
185
186 static void ubox(void)
187 {
188 unsigned i;
189
190 for (i = 0; i < 256; i++) {
191 uint32 a, b, c;
192 uint32 w;
193 a = i;
194 b = a << 1; if (b & 0x100) b ^= S_MOD;
195 c = a ^ b;
196 w = (b << 0) | (a << 8) | (a << 16) | (c << 24);
197 u[0][i] = w;
198 u[1][i] = ROL32(w, 8);
199 u[2][i] = ROL32(w, 16);
200 u[3][i] = ROL32(w, 24);
201 }
202 }
203
204 /* --- Round constants --- */
205
206 void rcon(void)
207 {
208 unsigned r = 1;
209 int i;
210
211 for (i = 0; i < sizeof(rc); i++) {
212 rc[i] = r;
213 r <<= 1;
214 if (r & 0x100)
215 r ^= S_MOD;
216 }
217 }
218
219 /* --- @main@ --- */
220
221 int main(void)
222 {
223 int i, j;
224
225 puts("\
226 /* -*-c-*-\n\
227 *\n\
228 * Square tables [generated]\n\
229 */\n\
230 \n\
231 #ifndef CATACOMB_SQUARE_TAB_H\n\
232 #define CATACOMB_SQUARE_TAB_H\n\
233 ");
234
235 /* --- Write out the S-box --- */
236
237 sbox();
238 fputs("\
239 /* --- The byte substitution and its inverse --- */\n\
240 \n\
241 #define SQUARE_S { \\\n\
242 ", stdout);
243 for (i = 0; i < 256; i++) {
244 printf("0x%02x", s[i]);
245 if (i == 255)
246 fputs(" \\\n}\n\n", stdout);
247 else if (i % 8 == 7)
248 fputs(", \\\n ", stdout);
249 else
250 fputs(", ", stdout);
251 }
252
253 fputs("\
254 #define SQUARE_SI { \\\n\
255 ", stdout);
256 for (i = 0; i < 256; i++) {
257 printf("0x%02x", si[i]);
258 if (i == 255)
259 fputs(" \\\n}\n\n", stdout);
260 else if (i % 8 == 7)
261 fputs(", \\\n ", stdout);
262 else
263 fputs(", ", stdout);
264 }
265
266 /* --- Write out the big t tables --- */
267
268 tbox();
269 fputs("\
270 /* --- The big round tables --- */\n\
271 \n\
272 #define SQUARE_T { \\\n\
273 { ", stdout);
274 for (j = 0; j < 4; j++) {
275 for (i = 0; i < 256; i++) {
276 printf("0x%08x", t[j][i]);
277 if (i == 255) {
278 if (j == 3)
279 fputs(" } \\\n}\n\n", stdout);
280 else
281 fputs(" }, \\\n\
282 \\\n\
283 { ", stdout);
284 } else if (i % 4 == 3)
285 fputs(", \\\n ", stdout);
286 else
287 fputs(", ", stdout);
288 }
289 }
290
291 fputs("\
292 #define SQUARE_TI { \\\n\
293 { ", stdout);
294 for (j = 0; j < 4; j++) {
295 for (i = 0; i < 256; i++) {
296 printf("0x%08x", ti[j][i]);
297 if (i == 255) {
298 if (j == 3)
299 fputs(" } \\\n}\n\n", stdout);
300 else
301 fputs(" }, \\\n\
302 \\\n\
303 { ", stdout);
304 } else if (i % 4 == 3)
305 fputs(", \\\n ", stdout);
306 else
307 fputs(", ", stdout);
308 }
309 }
310
311 /* --- Write out the big u tables --- */
312
313 ubox();
314 fputs("\
315 /* --- The key schedule tables --- */\n\
316 \n\
317 #define SQUARE_U { \\\n\
318 { ", stdout);
319 for (j = 0; j < 4; j++) {
320 for (i = 0; i < 256; i++) {
321 printf("0x%08x", u[j][i]);
322 if (i == 255) {
323 if (j == 3)
324 fputs(" } \\\n}\n\n", stdout);
325 else
326 fputs(" }, \\\n\
327 \\\n\
328 { ", stdout);
329 } else if (i % 4 == 3)
330 fputs(", \\\n ", stdout);
331 else
332 fputs(", ", stdout);
333 }
334 }
335
336 /* --- Round constants --- */
337
338 rcon();
339 fputs("\
340 /* --- The round constants --- */\n\
341 \n\
342 #define SQUARE_RCON { \\\n\
343 ", stdout);
344 for (i = 0; i < sizeof(rc); i++) {
345 printf("0x%02x", rc[i]);
346 if (i == sizeof(rc) - 1)
347 fputs(" \\\n}\n\n", stdout);
348 else if (i % 8 == 7)
349 fputs(", \\\n ", stdout);
350 else
351 fputs(", ", stdout);
352 }
353
354 /* --- Done --- */
355
356 puts("#endif");
357
358 if (fclose(stdout)) {
359 fprintf(stderr, "error writing data\n");
360 exit(EXIT_FAILURE);
361 }
362
363 return (0);
364 }
365
366 /*----- That's all, folks -------------------------------------------------*/