Rearrange the file tree.
[u/mdw/catacomb] / rand / dsarand.c
1 /* -*-c-*-
2 *
3 * Random number generator for DSA
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <stdarg.h>
31 #include <string.h>
32
33 #include <mLib/alloc.h>
34 #include <mLib/bits.h>
35 #include <mLib/sub.h>
36
37 #include "dsarand.h"
38 #include "grand.h"
39 #include "sha.h"
40
41 /*----- Main code ---------------------------------------------------------*/
42
43 /* --- @STEP@ --- *
44 *
45 * Arguments: @dsarand *d@ = pointer to context
46 *
47 * Use: Increments the buffer by one, interpreting it as a big-endian
48 * integer. Carries outside the integer are discarded.
49 */
50
51 #define STEP(d) do { \
52 dsarand *_d = (d); \
53 octet *_p = _d->p; \
54 octet *_q = _p + _d->sz; \
55 unsigned _c = 1; \
56 while (_c && _q > _p) { \
57 _c += *--_q; \
58 *_q = U8(_c); \
59 _c >>= 8; \
60 } \
61 } while (0)
62
63 /* --- @dsarand_init@ --- *
64 *
65 * Arguments: @dsarand *d@ = pointer to context
66 * @const void *p@ = pointer to seed buffer
67 * @size_t sz@ = size of the buffer
68 *
69 * Returns: ---
70 *
71 * Use: Initializes a DSA random number generator.
72 */
73
74 void dsarand_init(dsarand *d, const void *p, size_t sz)
75 {
76 d->p = xmalloc(sz);
77 d->sz = sz;
78 d->passes = 1;
79 if (p)
80 memcpy(d->p, p, sz);
81 }
82
83 /* --- @dsarand_reseed@ --- *
84 *
85 * Arguments: @dsarand *d@ = pointer to context
86 * @const void *p@ = pointer to seed buffer
87 * @size_t sz@ = size of the buffer
88 *
89 * Returns: ---
90 *
91 * Use: Initializes a DSA random number generator.
92 */
93
94 void dsarand_reseed(dsarand *d, const void *p, size_t sz)
95 {
96 xfree(d->p);
97 d->p = xmalloc(sz);
98 d->sz = sz;
99 d->passes = 1;
100 if (p)
101 memcpy(d->p, p, sz);
102 }
103
104 /* --- @dsarand_destroy@ --- *
105 *
106 * Arguments: @dsarand *d@ = pointer to context
107 *
108 * Returns: ---
109 *
110 * Use: Disposes of a DSA random number generation context.
111 */
112
113 void dsarand_destroy(dsarand *d)
114 {
115 xfree(d->p);
116 }
117
118 /* --- @dsarand_fill@ --- *
119 *
120 * Arguments: @dsarand *d@ = pointer to context
121 * @void *p@ = pointer to output buffer
122 * @size_t sz@ = size of output buffer
123 *
124 * Returns: ---
125 *
126 * Use: Fills an output buffer with pseudorandom data.
127 *
128 * Let %$p$% be the numerical value of the input buffer, and let
129 * %$b$% be the number of bytes required. Let
130 * %$z = \lceil b / 20 \rceil$% be the number of SHA outputs
131 * required. Then the output of pass %$n$% is
132 *
133 * %$P_n = \sum_{0 \le i < z} 2^{160i} SHA(p + nz + i)$%
134 * %${} \bmod 2^{8b}$%
135 *
136 * and the actual result in the output buffer is the XOR of all
137 * of the output passes.
138 *
139 * The DSA procedure for choosing @q@ involves two passes with
140 * %$z = 1$%; the procedure for choosing @p@ involves one pass
141 * with larger %$z$%. This generalization of the DSA generation
142 * procedure is my own invention but it seems relatively sound.
143 */
144
145 void dsarand_fill(dsarand *d, void *p, size_t sz)
146 {
147 octet *q = p;
148 unsigned n = d->passes;
149
150 /* --- Write out the first pass --- *
151 *
152 * This can write directly to the output buffer, so it's done differently
153 * from the latter passes.
154 */
155
156 {
157 size_t o = sz;
158
159 while (o) {
160 sha_ctx h;
161
162 /* --- Hash the input buffer --- */
163
164 sha_init(&h);
165 sha_hash(&h, d->p, d->sz);
166
167 /* --- If enough space, extract the hash output directly --- */
168
169 if (o >= SHA_HASHSZ) {
170 o -= SHA_HASHSZ;
171 sha_done(&h, q + o);
172 }
173
174 /* --- Otherwise take the hash result out of line and copy it --- */
175
176 else {
177 octet hash[SHA_HASHSZ];
178 sha_done(&h, hash);
179 memcpy(q, hash + (SHA_HASHSZ - o), o);
180 o = 0;
181 }
182
183 /* --- Step the input buffer --- */
184
185 STEP(d);
186 }
187
188 /* --- Another pass has been done --- */
189
190 n--;
191 }
192
193 /* --- Write out subsequent passes --- *
194 *
195 * The hash output has to be done offline, so this is slightly easier.
196 */
197
198 while (n) {
199 size_t o = sz;
200
201 while (o) {
202 sha_ctx h;
203 octet hash[SHA_HASHSZ];
204 size_t n;
205 octet *pp, *qq;
206
207 /* --- Hash the input buffer --- */
208
209 sha_init(&h);
210 sha_hash(&h, d->p, d->sz);
211 sha_done(&h, hash);
212
213 /* --- Work out how much output is wanted --- */
214
215 n = SHA_HASHSZ;
216 if (n > o)
217 n = o;
218 o -= n;
219
220 /* --- XOR the data out --- */
221
222 for (pp = hash + (SHA_HASHSZ - n), qq = q + o;
223 pp < hash + SHA_HASHSZ; pp++, qq++)
224 *qq ^= *pp;
225
226 /* --- Step the input buffer --- */
227
228 STEP(d);
229 }
230
231 /* --- Another pass is done --- */
232
233 n--;
234 }
235 }
236
237 /*----- Generic pseudorandom-number generator interface -------------------*/
238
239 static const grand_ops gops;
240
241 typedef struct gctx {
242 grand r;
243 dsarand d;
244 } gctx;
245
246 static void gdestroy(grand *r)
247 {
248 gctx *g = (gctx *)r;
249 dsarand_destroy(&g->d);
250 DESTROY(g);
251 }
252
253 static int gmisc(grand *r, unsigned op, ...)
254 {
255 gctx *g = (gctx *)r;
256 va_list ap;
257 int rc = 0;
258 va_start(ap, op);
259
260 switch (op) {
261 case GRAND_CHECK:
262 switch (va_arg(ap, unsigned)) {
263 case GRAND_CHECK:
264 case GRAND_SEEDBLOCK:
265 case GRAND_SEEDRAND:
266 case DSARAND_PASSES:
267 case DSARAND_SEEDSZ:
268 case DSARAND_GETSEED:
269 rc = 1;
270 break;
271 default:
272 rc = 0;
273 break;
274 }
275 break;
276 case GRAND_SEEDBLOCK: {
277 const void *p = va_arg(ap, const void *);
278 size_t sz = va_arg(ap, size_t);
279 dsarand_reseed(&g->d, p, sz);
280 } break;
281 case GRAND_SEEDRAND: {
282 grand *rr = va_arg(ap, grand *);
283 rr->ops->fill(rr, g->d.p, g->d.sz);
284 } break;
285 case DSARAND_PASSES:
286 g->d.passes = va_arg(ap, unsigned);
287 break;
288 case DSARAND_SEEDSZ:
289 rc = g->d.sz;
290 break;
291 case DSARAND_GETSEED:
292 memcpy(va_arg(ap, void *), g->d.p, g->d.sz);
293 break;
294 default:
295 GRAND_BADOP;
296 break;
297 }
298
299 va_end(ap);
300 return (rc);
301 }
302
303 static void gfill(grand *r, void *p, size_t sz)
304 {
305 gctx *g = (gctx *)r;
306 dsarand_fill(&g->d, p, sz);
307 }
308
309 static const grand_ops gops = {
310 "dsarand",
311 0, 0,
312 gmisc, gdestroy,
313 grand_word, grand_byte, grand_word, grand_range, gfill
314 };
315
316 /* --- @dsarand_create@ --- *
317 *
318 * Arguments: @const void *p@ = pointer to seed buffer
319 * @size_t sz@ = size of seed buffer
320 *
321 * Returns: Pointer to a generic generator.
322 *
323 * Use: Constructs a generic generator interface over a Catacomb
324 * entropy pool generator.
325 */
326
327 grand *dsarand_create(const void *p, size_t sz)
328 {
329 gctx *g = CREATE(gctx);
330 g->r.ops = &gops;
331 dsarand_init(&g->d, p, sz);
332 return (&g->r);
333 }
334
335 /*----- That's all, folks -------------------------------------------------*/