Release 2.1.3.
[u/mdw/catacomb] / rho.c
1 /* -*-c-*-
2 *
3 * $Id: rho.c,v 1.5 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Pollard's rho algorithm for discrete logs
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include "fibrand.h"
33 #include "mp.h"
34 #include "mpmont.h"
35 #include "mprand.h"
36 #include "rho.h"
37
38 /*----- Main code ---------------------------------------------------------*/
39
40 /* --- @rho@ --- *
41 *
42 * Arguments: @rho_ctx *cc@ = pointer to the context structure
43 * @void *x, *y@ = two (equal) base values (try 1)
44 * @mp *a, *b@ = logs of %$x$% (see below)
45 *
46 * Returns: The discrete logarithm %$\log_g a$%, or null if the algorithm
47 * failed. (This is unlikely, though possible.)
48 *
49 * Use: Uses Pollard's rho algorithm to compute discrete logs in the
50 * group %$G$% generated by %$g$%.
51 *
52 * The algorithm works by finding a cycle in a pseudo-random
53 * walk. The function @ops->split@ should return an element
54 * from %$\{\,0, 1, 2\,\}$% according to its argument, in order
55 * to determine the walk. At each step in the walk, we know a
56 * group element %$x \in G$% together with its representation as
57 * a product of powers of %$g$% and $%a$% (i.e., we know that
58 * %$x = g^\alpha a^\beta$% for some %$\alpha$%, %$\beta$%).
59 *
60 * Locating a cycle gives us a collision
61 *
62 * %$g^{\alpha} a^{\beta} = g^{\alpha'} a^{\beta'}$%
63 *
64 * Taking logs of both sides (to base %$g$%) gives us that
65 *
66 * %$\log a\equiv\frac{\alpha-\alpha'}{\beta'-\beta}\bmod{n}$%
67 *
68 * Good initial values are %$x = y = 1$% (the multiplicative
69 * identity of %$G$%) and %$\alpha\equiv\beta\equiv0\bmod{n}$%.
70 * If that doesn't work then start choosing more `interesting'
71 * values.
72 *
73 * Note that the algorithm requires minimal space but
74 * %$O(\sqrt{n})$% time. Don't do this on large groups,
75 * particularly if you can find a decent factor base.
76 *
77 * Finally, note that this function will free the input values
78 * when it's finished with them. This probably isn't a great
79 * problem.
80 */
81
82 static void step(rho_ctx *cc, void *x, mp **a, mp **b)
83 {
84 switch (cc->ops->split(x)) {
85 case 0:
86 cc->ops->mul(x, cc->g, cc->c);
87 *a = mp_add(*a, *a, MP_ONE);
88 if (MP_CMP(*a, >=, cc->n))
89 *a = mp_sub(*a, *a, cc->n);
90 break;
91 case 1:
92 cc->ops->sqr(x, cc->c);
93 *a = mp_lsl(*a, *a, 1);
94 if (MP_CMP(*a, >=, cc->n))
95 *a = mp_sub(*a, *a, cc->n);
96 *b = mp_lsl(*b, *b, 1);
97 if (MP_CMP(*b, >=, cc->n))
98 *b = mp_sub(*b, *b, cc->n);
99 break;
100 case 2:
101 cc->ops->mul(x, cc->a, cc->c);
102 *b = mp_add(*b, *b, MP_ONE);
103 if (MP_CMP(*b, >=, cc->n))
104 *b = mp_sub(*b, *b, cc->n);
105 break;
106 }
107 }
108
109 mp *rho(rho_ctx *cc, void *x, void *y, mp *a, mp *b)
110 {
111 mp *aa = MP_COPY(a), *bb = MP_COPY(b);
112 mp *g;
113
114 /* --- Grind through the random walk until we find a collision --- */
115
116 do {
117 step(cc, x, &a, &b);
118 step(cc, y, &aa, &bb);
119 step(cc, y, &aa, &bb);
120 } while (!cc->ops->eq(x, y));
121 cc->ops->drop(x);
122 cc->ops->drop(y);
123
124 /* --- Now sort out the mess --- */
125
126 aa = mp_sub(aa, a, aa);
127 bb = mp_sub(bb, bb, b);
128 g = MP_NEW;
129 mp_gcd(&g, &bb, 0, bb, cc->n);
130 if (!MP_EQ(g, MP_ONE)) {
131 mp_drop(aa);
132 aa = 0;
133 } else {
134 aa = mp_mul(aa, aa, bb);
135 mp_div(0, &aa, aa, cc->n);
136 }
137
138 /* --- Done --- */
139
140 mp_drop(bb);
141 mp_drop(g);
142 mp_drop(a);
143 mp_drop(b);
144 return (aa);
145 }
146
147 /* --- @rho_prime@ --- *
148 *
149 * Arguments: @mp *g@ = generator for the group
150 * @mp *a@ = value to find the logarithm of
151 * @mp *n@ = order of the group
152 * @mp *p@ = prime size of the underlying prime field
153 *
154 * Returns: The discrete logarithm %$\log_g a$%.
155 *
156 * Use: Computes discrete logarithms in a subgroup of a prime field.
157 */
158
159 static void prime_sqr(void *x, void *c)
160 {
161 mp **p = x;
162 mp *a = *p;
163 a = mp_sqr(a, a);
164 a = mpmont_reduce(c, a, a);
165 *p = a;
166 }
167
168 static void prime_mul(void *x, void *y, void *c)
169 {
170 mp **p = x;
171 mp *a = *p;
172 a = mpmont_mul(c, a, a, y);
173 *p = a;
174 }
175
176 static int prime_eq(void *x, void *y)
177 {
178 return (MP_EQ(*(mp **)x, *(mp **)y));
179 }
180
181 static int prime_split(void *x)
182 {
183 /* --- Notes on the splitting function --- *
184 *
185 * The objective is to produce a simple pseudorandom mapping from the
186 * underlying field \gf{p} to \{\,0, 1, 2\,\}$%. This is further
187 * constrained by the fact that we must not have %$1 \mapsto 1$% (since
188 * otherwise the stepping function above will loop).
189 *
190 * The function we choose is very simple: we take the least significant
191 * word from the integer, add one (to prevent the %$1 \mapsto 1$% property
192 * described above) and reduce modulo 3. This is slightly biased against
193 * the result 2, but this doesn't appear to be relevant.
194 */
195
196 return (((*(mp **)x)->v[0] + 1) % 3);
197 }
198
199 static void prime_drop(void *x)
200 {
201 MP_DROP(*(mp **)x);
202 }
203
204 static const rho_ops prime_ops = {
205 prime_sqr, prime_mul, prime_eq, prime_split, prime_drop
206 };
207
208 mp *rho_prime(mp *g, mp *a, mp *n, mp *p)
209 {
210 rho_ctx cc;
211 grand *r = 0;
212 mpmont mm;
213 mp *x, *y;
214 mp *aa, *bb;
215 mp *l;
216
217 /* --- Initialization --- */
218
219 mpmont_create(&mm, p);
220 cc.ops = &prime_ops;
221 cc.c = &mm;
222 cc.n = n;
223 cc.g = mpmont_mul(&mm, MP_NEW, g, mm.r2);
224 cc.a = mpmont_mul(&mm, MP_NEW, a, mm.r2);
225 x = MP_COPY(mm.r);
226 y = MP_COPY(x);
227 aa = bb = MP_ZERO;
228
229 /* --- The main loop --- */
230
231 while ((l = rho(&cc, &x, &y, aa, bb)) == 0) {
232 mp_expfactor f[2];
233
234 if (!r)
235 r = fibrand_create(0);
236 aa = mprand_range(MP_NEW, n, r, 0);
237 bb = mprand_range(MP_NEW, n, r, 0);
238 f[0].base = cc.g; f[0].exp = aa;
239 f[1].base = cc.a; f[1].exp = bb;
240 x = mpmont_mexpr(&mm, MP_NEW, f, 2);
241 y = MP_COPY(x);
242 }
243
244 /* --- Throw everything away now --- */
245
246 if (r)
247 r->ops->destroy(r);
248 mp_drop(cc.g);
249 mp_drop(cc.a);
250 mpmont_destroy(&mm);
251 return (l);
252 }
253
254 /*----- Test rig ----------------------------------------------------------*/
255
256 #ifdef TEST_RIG
257
258 #include <stdio.h>
259
260 #include "dh.h"
261
262 int main(void)
263 {
264 dh_param dp;
265 mp *x, *y;
266 grand *r = fibrand_create(0);
267 mpmont mm;
268 mp *l;
269 int ok;
270
271 fputs("rho: ", stdout);
272 fflush(stdout);
273
274 dh_gen(&dp, 32, 256, 0, r, pgen_evspin, 0);
275 x = mprand_range(MP_NEW, dp.q, r, 0);
276 mpmont_create(&mm, dp.p);
277 y = mpmont_exp(&mm, MP_NEW, dp.g, x);
278 mpmont_destroy(&mm);
279 l = rho_prime(dp.g, y, dp.q, dp.p);
280 if (MP_EQ(x, l)) {
281 fputs(". ok\n", stdout);
282 ok = 1;
283 } else {
284 fputs("\n*** rho (discrete logs) failed\n", stdout);
285 ok = 0;
286 }
287
288 mp_drop(l);
289 mp_drop(x);
290 mp_drop(y);
291 r->ops->destroy(r);
292 dh_paramfree(&dp);
293 assert(mparena_count(MPARENA_GLOBAL) == 0);
294
295 return (ok ? 0 : EXIT_FAILURE);
296 }
297
298 #endif
299
300 /*----- That's all, folks -------------------------------------------------*/