Cleanups.
[u/mdw/catacomb] / rsa-recover.c
1 /* -*-c-*-
2 *
3 * $Id: rsa-recover.c,v 1.7 2004/04/08 01:36:15 mdw Exp $
4 *
5 * Recover RSA parameters
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include "mp.h"
33 #include "mpmont.h"
34 #include "rsa.h"
35
36 /*----- Main code ---------------------------------------------------------*/
37
38 /* --- @rsa_recover@ --- *
39 *
40 * Arguments: @rsa_priv *rp@ = pointer to parameter block
41 *
42 * Returns: Zero if all went well, nonzero if the parameters make no
43 * sense.
44 *
45 * Use: Derives the full set of RSA parameters given a minimal set.
46 */
47
48 int rsa_recover(rsa_priv *rp)
49 {
50 /* --- If there is no modulus, calculate it --- */
51
52 if (!rp->n) {
53 if (!rp->p || !rp->q)
54 return (-1);
55 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
56 }
57
58 /* --- If there are no factors, compute them --- */
59
60 else if (!rp->p || !rp->q) {
61
62 /* --- If one is missing, use simple division to recover the other --- */
63
64 if (rp->p || rp->q) {
65 mp *r = MP_NEW;
66 if (rp->p)
67 mp_div(&rp->q, &r, rp->n, rp->p);
68 else
69 mp_div(&rp->p, &r, rp->n, rp->q);
70 if (!MP_EQ(r, MP_ZERO)) {
71 mp_drop(r);
72 return (-1);
73 }
74 mp_drop(r);
75 }
76
77 /* --- Otherwise use the public and private moduli --- */
78
79 else if (!rp->e || !rp->d)
80 return (-1);
81 else {
82 mp *t;
83 size_t s;
84 mp a; mpw aw;
85 mp *m1;
86 mpmont mm;
87 int i;
88 mp *z = MP_NEW;
89
90 /* --- Work out the appropriate exponent --- *
91 *
92 * I need to compute %$s$% and %$t$% such that %$2^s t = e d - 1$%, and
93 * %$t$% is odd.
94 */
95
96 t = mp_mul(MP_NEW, rp->e, rp->d);
97 t = mp_sub(t, t, MP_ONE);
98 t = mp_odd(t, t, &s);
99
100 /* --- Set up for the exponentiation --- */
101
102 mpmont_create(&mm, rp->n);
103 m1 = mp_sub(MP_NEW, rp->n, mm.r);
104
105 /* --- Now for the main loop --- *
106 *
107 * Choose candidate integers and attempt to factor the modulus.
108 */
109
110 mp_build(&a, &aw, &aw + 1);
111 i = 0;
112 for (;;) {
113 again:
114
115 /* --- Choose a random %$a$% and calculate %$z = a^t \bmod n$% --- *
116 *
117 * If %$z \equiv 1$% or %$z \equiv -1 \pmod n$% then this iteration
118 * is a failure.
119 */
120
121 aw = primetab[i++];
122 z = mpmont_mul(&mm, z, &a, mm.r2);
123 z = mpmont_expr(&mm, z, z, t);
124 if (MP_EQ(z, mm.r) || MP_EQ(z, m1))
125 continue;
126
127 /* --- Now square until something interesting happens --- *
128 *
129 * Compute %$z^{2i} \bmod n$%. Eventually, I'll either get %$-1$% or
130 * %$1$%. If the former, the number is uninteresting, and I need to
131 * restart. If the latter, the previous number minus 1 has a common
132 * factor with %$n$%.
133 */
134
135 for (;;) {
136 mp *zz = mp_sqr(MP_NEW, z);
137 zz = mpmont_reduce(&mm, zz, zz);
138 if (MP_EQ(zz, mm.r)) {
139 mp_drop(zz);
140 goto done;
141 } else if (MP_EQ(zz, m1)) {
142 mp_drop(zz);
143 goto again;
144 }
145 mp_drop(z);
146 z = zz;
147 }
148 }
149
150 /* --- Do the factoring --- *
151 *
152 * Here's how it actually works. I've found an interesting square
153 * root of %$1 \pmod n$%. Any square root of 1 must be congruent to
154 * %$\pm 1$% modulo both %$p$% and %$q$%. Both congruent to %$1$% is
155 * boring, as is both congruent to %$-1$%. Subtracting one from the
156 * result makes it congruent to %$0$% modulo %$p$% or %$q$% (and
157 * nobody cares which), and hence can be extracted by a GCD
158 * operation.
159 */
160
161 done:
162 z = mpmont_reduce(&mm, z, z);
163 z = mp_sub(z, z, MP_ONE);
164 rp->p = MP_NEW;
165 mp_gcd(&rp->p, 0, 0, rp->n, z);
166 rp->q = MP_NEW;
167 mp_div(&rp->q, 0, rp->n, rp->p);
168 mp_drop(z);
169 mp_drop(t);
170 mp_drop(m1);
171 if (MP_CMP(rp->p, <, rp->q)) {
172 z = rp->p;
173 rp->p = rp->q;
174 rp->q = z;
175 }
176 mpmont_destroy(&mm);
177 }
178 }
179
180 /* --- If %$e$% or %$d$% is missing, recalculate it --- */
181
182 if (!rp->e || !rp->d) {
183 mp *phi;
184 mp *g = MP_NEW;
185 mp *p1, *q1;
186
187 /* --- Compute %$\varphi(n)$% --- */
188
189 phi = mp_sub(MP_NEW, rp->n, rp->p);
190 phi = mp_sub(phi, phi, rp->q);
191 phi = mp_add(phi, phi, MP_ONE);
192 p1 = mp_sub(MP_NEW, rp->p, MP_ONE);
193 q1 = mp_sub(MP_NEW, rp->q, MP_ONE);
194 mp_gcd(&g, 0, 0, p1, q1);
195 mp_div(&phi, 0, phi, g);
196 mp_drop(p1);
197 mp_drop(q1);
198
199 /* --- Recover the other exponent --- */
200
201 if (rp->e)
202 mp_gcd(&g, 0, &rp->d, phi, rp->e);
203 else if (rp->d)
204 mp_gcd(&g, 0, &rp->e, phi, rp->d);
205 else {
206 mp_drop(phi);
207 mp_drop(g);
208 return (-1);
209 }
210
211 mp_drop(phi);
212 if (!MP_EQ(g, MP_ONE)) {
213 mp_drop(g);
214 return (-1);
215 }
216 mp_drop(g);
217 }
218
219 /* --- Compute %$q^{-1} \bmod p$% --- */
220
221 if (!rp->q_inv)
222 mp_gcd(0, 0, &rp->q_inv, rp->p, rp->q);
223
224 /* --- Compute %$d \bmod (p - 1)$% and %$d \bmod (q - 1)$% --- */
225
226 if (!rp->dp) {
227 mp *p1 = mp_sub(MP_NEW, rp->p, MP_ONE);
228 mp_div(0, &rp->dp, rp->d, p1);
229 mp_drop(p1);
230 }
231 if (!rp->dq) {
232 mp *q1 = mp_sub(MP_NEW, rp->q, MP_ONE);
233 mp_div(0, &rp->dq, rp->d, q1);
234 mp_drop(q1);
235 }
236
237 /* --- Done --- */
238
239 return (0);
240 }
241
242 /*----- That's all, folks -------------------------------------------------*/