catcrypt: Implement symmetric key-encapsulation and signature schemes.
[u/mdw/catacomb] / cc-kem.c
1 /* -*-c-*-
2 *
3 * $Id$
4 *
5 * Catcrypt key-encapsulation
6 *
7 * (c) 2004 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Header files ------------------------------------------------------*/
31
32 #include <stdlib.h>
33
34 #include <mLib/alloc.h>
35 #include <mLib/dstr.h>
36 #include <mLib/report.h>
37 #include <mLib/sub.h>
38
39 #include "mprand.h"
40 #include "rand.h"
41
42 #include "ec.h"
43 #include "ec-keys.h"
44 #include "dh.h"
45 #include "rsa.h"
46
47 #include "rmd160.h"
48 #include "blowfish-cbc.h"
49
50 #include "cc.h"
51
52 /*----- Key encapsulation -------------------------------------------------*/
53
54 /* --- RSA --- */
55
56 typedef struct rsa_encctx {
57 kem k;
58 rsa_pubctx rp;
59 } rsa_encctx;
60
61 static kem *rsa_encinit(key *k, void *kd)
62 {
63 rsa_encctx *re = CREATE(rsa_encctx);
64 rsa_pubcreate(&re->rp, kd);
65 return (&re->k);
66 }
67
68 static int rsa_encdoit(kem *k, dstr *d, ghash *h)
69 {
70 rsa_encctx *re = (rsa_encctx *)k;
71 mp *x = mprand_range(MP_NEW, re->rp.rp->n, &rand_global, 0);
72 mp *y = rsa_pubop(&re->rp, MP_NEW, x);
73 size_t n = mp_octets(re->rp.rp->n);
74 dstr_ensure(d, n);
75 mp_storeb(x, d->buf, n);
76 GH_HASH(h, d->buf, n);
77 mp_storeb(y, d->buf, n);
78 d->len += n;
79 mp_drop(x);
80 mp_drop(y);
81 return (0);
82 }
83
84 static const char *rsa_lengthcheck(mp *n)
85 {
86 if (mp_bits(n) < 1020) return ("key too short");
87 return (0);
88 }
89
90 static const char *rsa_enccheck(kem *k)
91 {
92 rsa_encctx *re = (rsa_encctx *)k;
93 const char *e;
94 if ((e = rsa_lengthcheck(re->rp.rp->n)) != 0) return (e);
95 return (0);
96 }
97
98 static void rsa_encdestroy(kem *k)
99 {
100 rsa_encctx *re = (rsa_encctx *)k;
101 rsa_pubdestroy(&re->rp);
102 DESTROY(re);
103 }
104
105 static const kemops rsa_encops = {
106 rsa_pubfetch, sizeof(rsa_pub),
107 rsa_encinit, rsa_encdoit, rsa_enccheck, rsa_encdestroy
108 };
109
110 typedef struct rsa_decctx {
111 kem k;
112 rsa_privctx rp;
113 } rsa_decctx;
114
115 static kem *rsa_decinit(key *k, void *kd)
116 {
117 rsa_decctx *rd = CREATE(rsa_decctx);
118 rsa_privcreate(&rd->rp, kd, &rand_global);
119 return (&rd->k);
120 }
121
122 static int rsa_decdoit(kem *k, dstr *d, ghash *h)
123 {
124 rsa_decctx *rd = (rsa_decctx *)k;
125 mp *x = mp_loadb(MP_NEW, d->buf, d->len);
126 size_t n;
127 char *p;
128
129 if (MP_CMP(x, >=, rd->rp.rp->n)) {
130 mp_drop(x);
131 return (-1);
132 }
133 n = mp_octets(rd->rp.rp->n);
134 p = xmalloc(n);
135 x = rsa_privop(&rd->rp, x, x);
136 mp_storeb(x, p, n);
137 GH_HASH(h, p, n);
138 mp_drop(x);
139 xfree(p);
140 return (0);
141 }
142
143 static const char *rsa_deccheck(kem *k)
144 {
145 rsa_decctx *rd = (rsa_decctx *)k;
146 const char *e;
147 if ((e = rsa_lengthcheck(rd->rp.rp->n)) != 0) return (e);
148 return (0);
149 }
150
151 static void rsa_decdestroy(kem *k)
152 {
153 rsa_decctx *rd = (rsa_decctx *)k;
154 rsa_privdestroy(&rd->rp);
155 DESTROY(rd);
156 }
157
158 static const kemops rsa_decops = {
159 rsa_privfetch, sizeof(rsa_priv),
160 rsa_decinit, rsa_decdoit, rsa_deccheck, rsa_decdestroy
161 };
162
163 /* --- DH and EC --- */
164
165 typedef struct dh_encctx {
166 kem k;
167 group *g;
168 mp *x;
169 ge *y;
170 } dh_encctx;
171
172 static dh_encctx *dh_doinit(key *k, const gprime_param *gp, mp *y,
173 group *(*makegroup)(const gprime_param *),
174 const char *what)
175 {
176 dh_encctx *de = CREATE(dh_encctx);
177 dstr t = DSTR_INIT;
178
179 key_fulltag(k, &t);
180 if ((de->g = makegroup(gp)) == 0)
181 die(EXIT_FAILURE, "bad %s group in key `%s'", what, t.buf);
182 de->x = MP_NEW;
183 de->y = G_CREATE(de->g);
184 if (G_FROMINT(de->g, de->y, y))
185 die(EXIT_FAILURE, "bad public key `%s'", t.buf);
186 dstr_destroy(&t);
187 return (de);
188 }
189
190 static dh_encctx *ec_doinit(key *k, const char *cstr, const ec *y)
191 {
192 dh_encctx *de = CREATE(dh_encctx);
193 ec_info ei;
194 const char *e;
195 dstr t = DSTR_INIT;
196
197 key_fulltag(k, &t);
198 if ((e = ec_getinfo(&ei, cstr)) != 0 ||
199 (de->g = group_ec(&ei)) == 0)
200 die(EXIT_FAILURE, "bad elliptic curve spec in key `%s': %s", t.buf, e);
201 de->x = MP_NEW;
202 de->y = G_CREATE(de->g);
203 if (G_FROMEC(de->g, de->y, y))
204 die(EXIT_FAILURE, "bad public curve point `%s'", t.buf);
205 dstr_destroy(&t);
206 return (de);
207 }
208
209 static kem *dh_encinit(key *k, void *kd)
210 {
211 dh_pub *dp = kd;
212 dh_encctx *de = dh_doinit(k, &dp->dp, dp->y, group_prime, "prime");
213 return (&de->k);
214 }
215
216 static kem *bindh_encinit(key *k, void *kd)
217 {
218 dh_pub *dp = kd;
219 dh_encctx *de = dh_doinit(k, &dp->dp, dp->y, group_binary, "binary");
220 return (&de->k);
221 }
222
223 static kem *ec_encinit(key *k, void *kd)
224 {
225 ec_pub *ep = kd;
226 dh_encctx *de = ec_doinit(k, ep->cstr, &ep->p);
227 return (&de->k);
228 }
229
230 static int dh_encdoit(kem *k, dstr *d, ghash *h)
231 {
232 dh_encctx *de = (dh_encctx *)k;
233 mp *r = mprand_range(MP_NEW, de->g->r, &rand_global, 0);
234 ge *x = G_CREATE(de->g);
235 ge *y = G_CREATE(de->g);
236 size_t n = de->g->noctets;
237 buf b;
238
239 G_EXP(de->g, x, de->g->g, r);
240 G_EXP(de->g, y, de->y, r);
241 dstr_ensure(d, n);
242 buf_init(&b, d->buf, n);
243 G_TORAW(de->g, &b, y);
244 GH_HASH(h, BBASE(&b), BLEN(&b));
245 buf_init(&b, d->buf, n);
246 G_TORAW(de->g, &b, x);
247 GH_HASH(h, BBASE(&b), BLEN(&b));
248 d->len += BLEN(&b);
249 mp_drop(r);
250 G_DESTROY(de->g, x);
251 G_DESTROY(de->g, y);
252 return (0);
253 }
254
255 static const char *dh_enccheck(kem *k)
256 {
257 dh_encctx *de = (dh_encctx *)k;
258 const char *e;
259 if ((e = G_CHECK(de->g, &rand_global)) != 0)
260 return (0);
261 if (group_check(de->g, de->y))
262 return ("public key not in subgroup");
263 return (0);
264 }
265
266 static void dh_encdestroy(kem *k)
267 {
268 dh_encctx *de = (dh_encctx *)k;
269 G_DESTROY(de->g, de->y);
270 mp_drop(de->x);
271 G_DESTROYGROUP(de->g);
272 DESTROY(de);
273 }
274
275 static const kemops dh_encops = {
276 dh_pubfetch, sizeof(dh_pub),
277 dh_encinit, dh_encdoit, dh_enccheck, dh_encdestroy
278 };
279
280 static const kemops bindh_encops = {
281 dh_pubfetch, sizeof(dh_pub),
282 bindh_encinit, dh_encdoit, dh_enccheck, dh_encdestroy
283 };
284
285 static const kemops ec_encops = {
286 ec_pubfetch, sizeof(ec_pub),
287 ec_encinit, dh_encdoit, dh_enccheck, dh_encdestroy
288 };
289
290 static kem *dh_decinit(key *k, void *kd)
291 {
292 dh_priv *dp = kd;
293 dh_encctx *de = dh_doinit(k, &dp->dp, dp->y, group_prime, "prime");
294 de->x = MP_COPY(dp->x);
295 return (&de->k);
296 }
297
298 static kem *bindh_decinit(key *k, void *kd)
299 {
300 dh_priv *dp = kd;
301 dh_encctx *de = dh_doinit(k, &dp->dp, dp->y, group_binary, "binary");
302 de->x = MP_COPY(dp->x);
303 return (&de->k);
304 }
305
306 static kem *ec_decinit(key *k, void *kd)
307 {
308 ec_priv *ep = kd;
309 dh_encctx *de = ec_doinit(k, ep->cstr, &ep->p);
310 de->x = MP_COPY(ep->x);
311 return (&de->k);
312 }
313
314 static int dh_decdoit(kem *k, dstr *d, ghash *h)
315 {
316 dh_encctx *de = (dh_encctx *)k;
317 ge *x = G_CREATE(de->g);
318 size_t n = de->g->noctets;
319 void *p = xmalloc(n);
320 buf b;
321 int rc = -1;
322
323 buf_init(&b, d->buf, d->len);
324 if (G_FROMRAW(de->g, &b, x) || group_check(de->g, x))
325 goto done;
326 G_EXP(de->g, x, x, de->x);
327 buf_init(&b, p, n);
328 G_TORAW(de->g, &b, x);
329 GH_HASH(h, BBASE(&b), BLEN(&b));
330 GH_HASH(h, d->buf, d->len);
331 rc = 0;
332 done:
333 G_DESTROY(de->g, x);
334 xfree(p);
335 return (rc);
336 }
337
338 static const kemops dh_decops = {
339 dh_privfetch, sizeof(dh_priv),
340 dh_decinit, dh_decdoit, dh_enccheck, dh_encdestroy
341 };
342
343 static const kemops bindh_decops = {
344 dh_privfetch, sizeof(dh_priv),
345 bindh_decinit, dh_decdoit, dh_enccheck, dh_encdestroy
346 };
347
348 static const kemops ec_decops = {
349 ec_privfetch, sizeof(ec_priv),
350 ec_decinit, dh_decdoit, dh_enccheck, dh_encdestroy
351 };
352
353 /* --- Symmetric --- */
354
355 typedef struct symm_ctx {
356 kem k;
357 key_packdef kp;
358 key_bin kb;
359 } symm_ctx;
360
361 static kem *symm_init(key *k, void *kd)
362 {
363 symm_ctx *s;
364 dstr d = DSTR_INIT;
365 int err;
366
367 s = CREATE(symm_ctx);
368
369 key_fulltag(k, &d);
370 s->kp.e = KENC_BINARY;
371 s->kp.p = &s->kb;
372 s->kp.kd = 0;
373
374 if ((err = key_unpack(&s->kp, kd, &d)) != 0) {
375 die(EXIT_FAILURE, "failed to unpack symmetric key `%s': %s",
376 d.buf, key_strerror(err));
377 }
378 dstr_destroy(&d);
379 return (&s->k);
380 }
381
382 static int symm_decdoit(kem *k, dstr *d, ghash *h)
383 {
384 symm_ctx *s = (symm_ctx *)k;
385
386 GH_HASH(h, s->kb.k, s->kb.sz);
387 GH_HASH(h, d->buf, d->len);
388 return (0);
389 }
390
391 static int symm_encdoit(kem *k, dstr *d, ghash *h)
392 {
393 dstr_ensure(d, h->ops->c->hashsz);
394 d->len += h->ops->c->hashsz;
395 rand_get(RAND_GLOBAL, d->buf, d->len);
396 return (symm_decdoit(k, d, h));
397 }
398
399 static const char *symm_check(kem *k) { return (0); }
400
401 static void symm_destroy(kem *k)
402 { symm_ctx *s = (symm_ctx *)k; key_unpackdone(&s->kp); }
403
404 static const kemops symm_encops = {
405 0, 0,
406 symm_init, symm_encdoit, symm_check, symm_destroy
407 };
408
409 static const kemops symm_decops = {
410 0, 0,
411 symm_init, symm_decdoit, symm_check, symm_destroy
412 };
413
414 /* --- The switch table --- */
415
416 const struct kemtab kemtab[] = {
417 { "rsa", &rsa_encops, &rsa_decops },
418 { "dh", &dh_encops, &dh_decops },
419 { "bindh", &bindh_encops, &bindh_decops },
420 { "ec", &ec_encops, &ec_decops },
421 { "symm", &symm_encops, &symm_decops },
422 { 0, 0, 0 }
423 };
424
425 /* --- @getkem@ --- *
426 *
427 * Arguments: @key *k@ = the key to load
428 * @const char *app@ = application name
429 * @int wantpriv@ = nonzero if we want to decrypt
430 *
431 * Returns: A key-encapsulating thing.
432 *
433 * Use: Loads a key.
434 */
435
436 kem *getkem(key *k, const char *app, int wantpriv)
437 {
438 const char *kalg, *halg = 0, *calg = 0;
439 dstr d = DSTR_INIT;
440 dstr t = DSTR_INIT;
441 size_t n;
442 char *p = 0;
443 const char *q;
444 kem *kk;
445 const struct kemtab *kt;
446 const kemops *ko;
447 void *kd;
448 int e;
449 key_packdef *kp;
450
451 /* --- Setup stuff --- */
452
453 key_fulltag(k, &t);
454
455 /* --- Get the KEM name --- *
456 *
457 * Take the attribute if it's there; otherwise use the key type.
458 */
459
460 n = strlen(app);
461 if ((q = key_getattr(0, k, "kem")) != 0) {
462 dstr_puts(&d, q);
463 p = d.buf;
464 } else if (strncmp(k->type, app, n) == 0 && k->type[n] == '-') {
465 dstr_puts(&d, k->type);
466 p = d.buf + n + 1;
467 } else
468 die(EXIT_FAILURE, "no KEM for key `%s'", t.buf);
469 kalg = p;
470
471 /* --- Grab the encryption scheme --- *
472 *
473 * Grab it from the KEM if it's there, but override it from the attribute.
474 */
475
476 if (p && (p = strchr(p, '/')) != 0) {
477 *p++ = 0;
478 calg = p;
479 }
480 if ((q = key_getattr(0, k, "cipher")) != 0)
481 calg = q;
482
483 /* --- Grab the hash function --- */
484
485 if (p && (p = strchr(p, '/')) != 0) {
486 *p++ = 0;
487 halg = p;
488 }
489 if ((q = key_getattr(0, k, "hash")) != 0)
490 halg = q;
491
492 /* --- Instantiate the KEM --- */
493
494 for (kt = kemtab; kt->name; kt++) {
495 if (strcmp(kt->name, kalg) == 0)
496 goto k_found;
497 }
498 die(EXIT_FAILURE, "key encapsulation mechanism `%s' not found in key `%s'",
499 kalg, t.buf);
500 k_found:;
501 ko = wantpriv ? kt->decops : kt->encops;
502 if (!ko->kf) {
503 kd = k->k;
504 key_incref(kd);
505 } else {
506 kd = xmalloc(ko->kdsz);
507 kp = key_fetchinit(ko->kf, 0, kd);
508 if ((e = key_fetch(kp, k)) != 0) {
509 die(EXIT_FAILURE, "error fetching key `%s': %s",
510 t.buf, key_strerror(e));
511 }
512 }
513 kk = ko->init(k, kd);
514 kk->kp = kp;
515 kk->ops = ko;
516 kk->kd = kd;
517
518 /* --- Set up the algorithms --- */
519
520 if (!halg)
521 kk->h = &rmd160;
522 else if ((kk->h = ghash_byname(halg)) == 0) {
523 die(EXIT_FAILURE, "hash algorithm `%s' not found in key `%s'",
524 halg, t.buf);
525 }
526
527 if (!calg)
528 kk->c = &blowfish_cbc;
529 else if ((kk->c = gcipher_byname(calg)) == 0) {
530 die(EXIT_FAILURE, "encryption scheme `%s' not found in key `%s'",
531 calg, t.buf);
532 }
533
534 dstr_reset(&d);
535 if ((q = key_getattr(0, k, "kdf")) == 0) {
536 dstr_putf(&d, "%s-mgf", kk->h->name);
537 q = d.buf;
538 }
539 if ((kk->cx = gcipher_byname(q)) == 0) {
540 die(EXIT_FAILURE, "encryption scheme (KDF) `%s' not found in key `%s'",
541 q, t.buf);
542 }
543
544 dstr_reset(&d);
545 if ((q = key_getattr(0, k, "mac")) == 0) {
546 dstr_putf(&d, "%s-hmac", kk->h->name);
547 q = d.buf;
548 }
549 if ((kk->m = gmac_byname(q)) == 0) {
550 die(EXIT_FAILURE,
551 "message authentication code `%s' not found in key `%s'",
552 q, t.buf);
553 }
554
555 /* --- Tidy up --- */
556
557 dstr_destroy(&d);
558 dstr_destroy(&t);
559 return (kk);
560 }
561
562 /* --- @setupkem@ --- *
563 *
564 * Arguments: @kem *k@ = key-encapsulation thing
565 * @dstr *d@ = key-encapsulation data
566 * @gcipher **cx@ = key-expansion function (for IVs)
567 * @gcipher **c@ = where to put initialized encryption scheme
568 * @gmac **m@ = where to put initialized MAC
569 *
570 * Returns: Zero on success, nonzero on failure.
571 *
572 * Use: Initializes all the various symmetric things from a KEM.
573 */
574
575 int setupkem(kem *k, dstr *d, gcipher **cx, gcipher **c, gmac **m)
576 {
577 octet *kd;
578 size_t n, cn, mn;
579 ghash *h;
580 int rc = -1;
581
582 h = GH_INIT(k->h);
583 if (k->ops->doit(k, d, h))
584 goto done;
585 n = keysz(GH_CLASS(h)->hashsz, k->cx->keysz);
586 if (!n)
587 goto done;
588 kd = GH_DONE(h, 0);
589 *cx = GC_INIT(k->cx, kd, n);
590
591 cn = keysz(0, k->c->keysz); n = cn;
592 mn = keysz(0, k->m->keysz); if (mn > n) n = mn;
593 kd = xmalloc(n);
594 GC_ENCRYPT(*cx, 0, kd, cn);
595 *c = GC_INIT(k->c, kd, cn);
596 GC_ENCRYPT(*cx, 0, kd, mn);
597 *m = GM_KEY(k->m, kd, mn);
598 xfree(kd);
599
600 rc = 0;
601 done:
602 GH_DESTROY(h);
603 return (rc);
604 }
605
606 /* --- @freekem@ --- *
607 *
608 * Arguments: @kem *k@ = key-encapsulation thing
609 *
610 * Returns: ---
611 *
612 * Use: Frees up a key-encapsulation thing.
613 */
614
615 void freekem(kem *k)
616 {
617 if (!k->ops->kf)
618 key_drop(k->kd);
619 else {
620 key_fetchdone(k->kp);
621 xfree(k->kd);
622 }
623 k->ops->destroy(k);
624 }
625
626 /*----- That's all, folks -------------------------------------------------*/