Pollard's rho algorithm for computing discrete logs.
[u/mdw/catacomb] / rho.c
CommitLineData
f41f820e 1/* -*-c-*-
2 *
3 * $Id: rho.c,v 1.1 2000/07/09 21:32:30 mdw Exp $
4 *
5 * Pollard's rho algorithm for discrete logs
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: rho.c,v $
33 * Revision 1.1 2000/07/09 21:32:30 mdw
34 * Pollard's rho algorithm for computing discrete logs.
35 *
36 */
37
38/*----- Header files ------------------------------------------------------*/
39
40#include "fibrand.h"
41#include "mp.h"
42#include "mpmont.h"
43#include "mprand.h"
44#include "rho.h"
45
46/*----- Main code ---------------------------------------------------------*/
47
48/* --- @rho@ --- *
49 *
50 * Arguments: @rho_ctx *cc@ = pointer to the context structure
51 * @void *x, *y@ = two (equal) base values (try 1)
52 * @mp *a, *b@ = logs of %$x$% (see below)
53 *
54 * Returns: The discrete logarithm %$\log_g a$%, or null if the algorithm
55 * failed. (This is unlikely, though possible.)
56 *
57 * Use: Uses Pollard's rho algorithm to compute discrete logs in the
58 * group %$G$% generated by %$g$%.
59 *
60 * The algorithm works by finding a cycle in a pseudo-random
61 * walk. The function @ops->split@ should return an element
62 * from %$\{\,0, 1, 2\,\}$% according to its argument, in order
63 * to determine the walk. At each step in the walk, we know a
64 * group element %$x \in G$% together with its representation as
65 * a product of powers of %$g$% and $%a$% (i.e., we know that
66 * %$x = g^\alpha a^\beta$% for some %$\alpha$%, %$\beta$%).
67 *
68 * Locating a cycle gives us a collision
69 *
70 * %$g^{\alpha} a^{\beta} = g^{\alpha'} a^{\beta'}$%
71 *
72 * Taking logs of both sides (to base %$g$%) gives us that
73 *
74 * %$\log a\equiv\frac{\alpha-\alpha'}{\beta'-\beta}\bmod{n}$%
75 *
76 * Good initial values are %$x = y = 1$% (the multiplicative
77 * identity of %$G$%) and %$\alpha\equiv\beta\equiv0\bmod{n}$%.
78 * If that doesn't work then start choosing more `interesting'
79 * values.
80 *
81 * Note that the algorithm requires minimal space but
82 * %$O(\sqrt{n})$% time. Don't do this on large groups,
83 * particularly if you can find a decent factor base.
84 *
85 * Finally, note that this function will free the input values
86 * when it's finished with them. This probably isn't a great
87 * problem.
88 */
89
90static void step(rho_ctx *cc, void *x, mp **a, mp **b)
91{
92 switch (cc->ops->split(x)) {
93 case 0:
94 cc->ops->mul(x, cc->g, cc->c);
95 *a = mp_add(*a, *a, MP_ONE);
96 if (MP_CMP(*a, >=, cc->n))
97 *a = mp_sub(*a, *a, cc->n);
98 break;
99 case 1:
100 cc->ops->sqr(x, cc->c);
101 *a = mp_lsl(*a, *a, 1);
102 if (MP_CMP(*a, >=, cc->n))
103 *a = mp_sub(*a, *a, cc->n);
104 *b = mp_lsl(*b, *b, 1);
105 if (MP_CMP(*b, >=, cc->n))
106 *b = mp_sub(*b, *b, cc->n);
107 break;
108 case 2:
109 cc->ops->mul(x, cc->a, cc->c);
110 *b = mp_add(*b, *b, MP_ONE);
111 if (MP_CMP(*b, >=, cc->n))
112 *b = mp_sub(*b, *b, cc->n);
113 break;
114 }
115}
116
117mp *rho(rho_ctx *cc, void *x, void *y, mp *a, mp *b)
118{
119 mp *aa = MP_COPY(a), *bb = MP_COPY(b);
120 mp *g;
121
122 /* --- Grind through the random walk until we find a collision --- */
123
124 do {
125 step(cc, x, &a, &b);
126 step(cc, y, &aa, &bb);
127 step(cc, y, &aa, &bb);
128 } while (!cc->ops->eq(x, y));
129 cc->ops->drop(x);
130 cc->ops->drop(y);
131
132 /* --- Now sort out the mess --- */
133
134 aa = mp_sub(aa, a, aa);
135 bb = mp_sub(bb, bb, b);
136 g = MP_NEW;
137 mp_gcd(&g, &bb, 0, bb, cc->n);
138 if (MP_CMP(g, !=, MP_ONE)) {
139 mp_drop(aa);
140 aa = 0;
141 } else {
142 aa = mp_mul(aa, aa, bb);
143 mp_div(0, &aa, aa, cc->n);
144 }
145
146 /* --- Done --- */
147
148 mp_drop(bb);
149 mp_drop(g);
150 mp_drop(a);
151 mp_drop(b);
152 return (aa);
153}
154
155/* --- @rho_prime@ --- *
156 *
157 * Arguments: @mp *g@ = generator for the group
158 * @mp *a@ = value to find the logarithm of
159 * @mp *n@ = order of the group
160 * @mp *p@ = prime size of the underlying prime field
161 *
162 * Returns: The discrete logarithm %$\log_g a$%.
163 *
164 * Use: Computes discrete logarithms in a subgroup of a prime field.
165 */
166
167static void prime_sqr(void *x, void *c)
168{
169 mp **p = x;
170 mp *a = *p;
171 a = mp_sqr(a, a);
172 a = mpmont_reduce(c, a, a);
173 *p = a;
174}
175
176static void prime_mul(void *x, void *y, void *c)
177{
178 mp **p = x;
179 mp *a = *p;
180 a = mpmont_mul(c, a, a, y);
181 *p = a;
182}
183
184static int prime_eq(void *x, void *y)
185{
186 return (MP_CMP(*(mp **)x, ==, *(mp **)y));
187}
188
189static int prime_split(void *x)
190{
191 /* --- Notes on the splitting function --- *
192 *
193 * The objective is to produce a simple pseudorandom mapping from the
194 * underlying field \gf{p} to \{\,0, 1, 2\,\}$%. This is further
195 * constrained by the fact that we must not have %$1 \mapsto 1$% (since
196 * otherwise the stepping function above will loop).
197 *
198 * The function we choose is very simple: we take the least significant
199 * word from the integer, add one (to prevent the %$1 \mapsto 1$% property
200 * described above) and reduce modulo 3. This is slightly biased against
201 * the result 2, but this doesn't appear to be relevant.
202 */
203
204 return (((*(mp **)x)->v[0] + 1) % 3);
205}
206
207static void prime_drop(void *x)
208{
209 MP_DROP(*(mp **)x);
210}
211
212static rho_ops prime_ops = {
213 prime_sqr, prime_mul, prime_eq, prime_split, prime_drop
214};
215
216mp *rho_prime(mp *g, mp *a, mp *n, mp *p)
217{
218 rho_ctx cc;
219 grand *r = 0;
220 mpmont mm;
221 mp *x, *y;
222 mp *aa, *bb;
223 mp *l;
224
225 /* --- Initialization --- */
226
227 mpmont_create(&mm, p);
228 cc.ops = &prime_ops;
229 cc.c = &mm;
230 cc.n = n;
231 cc.g = mpmont_mul(&mm, MP_NEW, g, mm.r2);
232 cc.a = mpmont_mul(&mm, MP_NEW, a, mm.r2);
233 x = MP_COPY(mm.r);
234 y = MP_COPY(x);
235 aa = bb = MP_ZERO;
236
237 /* --- The main loop --- */
238
239 while ((l = rho(&cc, &x, &y, aa, bb)) == 0) {
240 mpmont_factor f[2];
241
242 if (!r)
243 r = fibrand_create(0);
244 aa = mprand_range(MP_NEW, n, r, 0);
245 bb = mprand_range(MP_NEW, n, r, 0);
246 f[0].base = g; f[0].exp = aa;
247 f[1].base = a; f[1].exp = bb;
248 x = mpmont_mexpr(&mm, MP_NEW, f, 2);
249 y = MP_COPY(x);
250 }
251
252 /* --- Throw everything away now --- */
253
254 if (r)
255 r->ops->destroy(r);
256 mp_drop(cc.g);
257 mp_drop(cc.a);
258 mpmont_destroy(&mm);
259 return (l);
260}
261
262/*----- Test rig ----------------------------------------------------------*/
263
264#ifdef TEST_RIG
265
266#include <stdio.h>
267
268#include "dh.h"
269
270int main(void)
271{
272 dh_param dp;
273 mp *x, *y;
274 grand *r = fibrand_create(0);
275 mpmont mm;
276 mp *l;
277 int ok;
278
279 fputs("rho: ", stdout);
280 fflush(stdout);
281
282 dh_gen(&dp, 32, 256, 0, r, pgen_evspin, 0);
283 x = mprand_range(MP_NEW, dp.q, r, 0);
284 mpmont_create(&mm, dp.p);
285 y = mpmont_exp(&mm, MP_NEW, dp.g, x);
286 mpmont_destroy(&mm);
287 l = rho_prime(dp.g, y, dp.q, dp.p);
288 if (MP_CMP(x, ==, l)) {
289 fputs(". ok\n", stdout);
290 ok = 1;
291 } else {
292 fputs("\n*** rho (discrete logs) failed\n", stdout);
293 ok = 0;
294 }
295
296 mp_drop(l);
297 mp_drop(x);
298 mp_drop(y);
299 r->ops->destroy(r);
300 dh_paramfree(&dp);
301 assert(mparena_count(MPARENA_GLOBAL) == 0);
302
303 return (ok ? 0 : EXIT_FAILURE);
304}
305
306#endif
307
308/*----- That's all, folks -------------------------------------------------*/