Pollard's rho algorithm for computing discrete logs.
[u/mdw/catacomb] / pfilt.c
CommitLineData
9a8b0c8d 1/* -*-c-*-
2 *
87b63d41 3 * $Id: pfilt.c,v 1.2 2000/06/17 11:54:27 mdw Exp $
9a8b0c8d 4 *
5 * Finding and testing prime numbers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: pfilt.c,v $
87b63d41 33 * Revision 1.2 2000/06/17 11:54:27 mdw
34 * Use new MP memory management functions.
35 *
9a8b0c8d 36 * Revision 1.1 1999/12/22 15:49:39 mdw
37 * Renamed from `pgen'. Reworking for new prime-search system.
38 *
39 * Revision 1.3 1999/12/10 23:28:35 mdw
40 * Track suggested destination changes.
41 *
42 * Revision 1.2 1999/11/20 22:23:05 mdw
43 * Add multiply-and-add function for Diffie-Hellman safe prime generation.
44 *
45 * Revision 1.1 1999/11/19 13:17:57 mdw
46 * Prime number generator and tester.
47 *
48 */
49
50/*----- Header files ------------------------------------------------------*/
51
52#include "mp.h"
53#include "mpmont.h"
54#include "pfilt.h"
55#include "pgen.h"
56#include "primetab.h"
57
58/*----- Main code ---------------------------------------------------------*/
59
60/* --- @pfilt_create@ --- *
61 *
62 * Arguments: @pfilt *p@ = pointer to prime filtering context
63 * @mp *m@ = pointer to initial number to test
64 *
65 * Returns: One of the @PGEN@ result codes.
66 *
67 * Use: Tests an initial number for primality by computing its
68 * residue modulo various small prime numbers. This is fairly
69 * quick, but not particularly certain. If a @PGEN_TRY@
70 * result is returned, perform Rabin-Miller tests to confirm.
71 */
72
73int pfilt_create(pfilt *p, mp *m)
74{
75 int rc = PGEN_TRY;
76 int i;
77 mp *r = MP_NEW;
78 mpw qw;
79 mp q;
80
81 /* --- Take a copy of the number --- */
82
83 mp_shrink(m);
84 p->m = MP_COPY(m);
85
86 /* --- Fill in the residues --- */
87
88 mp_build(&q, &qw, &qw + 1);
89 for (i = 0; i < NPRIME; i++) {
90 qw = primetab[i];
91 mp_div(0, &r, m, &q);
92 p->r[i] = r->v[0];
93 if (!p->r[i] && rc == PGEN_TRY) {
94 if (MP_LEN(m) == 1 && m->v[0] == primetab[i])
95 rc = PGEN_DONE;
96 else
97 rc = PGEN_FAIL;
98 }
99 }
100
101 /* --- Done --- */
102
103 mp_drop(r);
104 return (rc);
105}
106
107/* --- @pfilt_destroy@ --- *
108 *
109 * Arguments: @pfilt *p@ = pointer to prime filtering context
110 *
111 * Returns: ---
112 *
113 * Use: Discards a context and all the resources it holds.
114 */
115
116void pfilt_destroy(pfilt *p)
117{
118 mp_drop(p->m);
119}
120
121/* --- @pfilt_step@ --- *
122 *
123 * Arguments: @pfilt *p@ = pointer to prime filtering context
124 * @mpw step@ = how much to step the number
125 *
126 * Returns: One of the @PGEN@ result codes.
127 *
128 * Use: Steps a number by a small amount. Stepping is much faster
129 * than initializing with a new number. The test performed is
130 * the same simple one used by @primetab_create@, so @PGEN_TRY@
131 * results should be followed up by a Rabin-Miller test.
132 */
133
134int pfilt_step(pfilt *p, mpw step)
135{
136 int rc = PGEN_TRY;
137 int i;
138
139 /* --- Add the step on to the number --- */
140
141 p->m = mp_split(p->m);
142 mp_ensure(p->m, MP_LEN(p->m) + 1);
143 mpx_uaddn(p->m->v, p->m->vl, step);
144 mp_shrink(p->m);
145
146 /* --- Update the residue table --- */
147
148 for (i = 0; i < NPRIME; i++) {
149 p->r[i] = (p->r[i] + step) % primetab[i];
150 if (!p->r[i] && rc == PGEN_TRY) {
151 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
152 rc = PGEN_DONE;
153 else
154 rc = PGEN_FAIL;
155 }
156 }
157
158 /* --- Small numbers must be prime --- */
159
160 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
161 p->m->v[0] < MAXPRIME * MAXPRIME)
162 rc = PGEN_DONE;
163
164 /* --- Done --- */
165
166 return (rc);
167}
168
169/* --- @pfilt_muladd@ --- *
170 *
171 * Arguments: @pfilt *p@ = destination prime filtering context
172 * @const pfilt *q@ = source prime filtering context
173 * @mpw m@ = number to multiply by
174 * @mpw a@ = number to add
175 *
176 * Returns: One of the @PGEN@ result codes.
177 *
178 * Use: Multiplies the number in a prime filtering context by a
179 * small value and then adds a small value. The destination
180 * should either be uninitialized or the same as the source.
181 *
182 * Common things to do include multiplying by 2 and adding 0 to
183 * turn a prime into a jump for finding other primes with @q@ as
184 * a factor of @p - 1@, or multiplying by 2 and adding 1.
185 */
186
187int pfilt_muladd(pfilt *p, const pfilt *q, mpw m, mpw a)
188{
189 int rc = PGEN_TRY;
190 int i;
191
192 /* --- Multiply the big number --- */
193
194 {
87b63d41 195 mp *d = mp_new(MP_LEN(q->m) + 2, q->m->f);
9a8b0c8d 196 mpx_umuln(d->v, d->vl, q->m->v, q->m->vl, m);
197 mpx_uaddn(d->v, d->vl, a);
9a8b0c8d 198 if (p == q)
199 mp_drop(p->m);
200 mp_shrink(d);
201 p->m = d;
202 }
203
204 /* --- Gallivant through the residue table --- */
205
206 for (i = 0; i < NPRIME; i++) {
207 p->r[i] = (q->r[i] * m + a) % primetab[i];
208 if (!p->r[i] && rc == PGEN_TRY) {
209 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
210 rc = PGEN_DONE;
211 else
212 rc = PGEN_FAIL;
213 }
214 }
215
216 /* --- Small numbers must be prime --- */
217
218 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
219 p->m->v[0] < MAXPRIME * MAXPRIME)
220 rc = PGEN_DONE;
221
222 /* --- Finished --- */
223
224 return (rc);
225}
226
227/* --- @pfilt_jump@ --- *
228 *
229 * Arguments: @pfilt *p@ = pointer to prime filtering context
230 * @const pfilt *j@ = pointer to another filtering context
231 *
232 * Returns: One of the @PGEN@ result codes.
233 *
234 * Use: Steps a number by a large amount. Even so, jumping is much
235 * faster than initializing a new number. The test peformed is
236 * the same simple one used by @primetab_create@, so @PGEN_TRY@
237 * results should be followed up by a Rabin-Miller test.
238 *
239 * Note that the number stored in the @j@ context is probably
240 * better off being even than prime. The important thing is
241 * that all of the residues for the number have already been
242 * computed.
243 */
244
245int pfilt_jump(pfilt *p, const pfilt *j)
246{
247 int rc = PGEN_TRY;
248 int i;
249
250 /* --- Add the step on --- */
251
252 p->m = mp_add(p->m, p->m, j->m);
253
254 /* --- Update the residue table --- */
255
256 for (i = 0; i < NPRIME; i++) {
257 p->r[i] = p->r[i] + j->r[i];
258 if (p->r[i] > primetab[i])
259 p->r[i] -= primetab[i];
260 if (!p->r[i] && rc == PGEN_TRY) {
261 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
262 rc = PGEN_DONE;
263 else
264 rc = PGEN_FAIL;
265 }
266 }
267
268 /* --- Small numbers must be prime --- */
269
270 if (rc == PGEN_TRY && MP_LEN(p->m) == 1 &&
271 p->m->v[0] < MAXPRIME * MAXPRIME)
272 rc = PGEN_DONE;
273
274 /* --- Done --- */
275
276 return (rc);
277}
278
279/*----- That's all, folks -------------------------------------------------*/