Pollard's rho algorithm for computing discrete logs.
[u/mdw/catacomb] / mpx-kmul.c
CommitLineData
a86e33af 1/* -*-c-*-
2 *
7d5fa32a 3 * $Id: mpx-kmul.c,v 1.4 2000/06/17 11:42:11 mdw Exp $
a86e33af 4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
7d5fa32a 33 * Revision 1.4 2000/06/17 11:42:11 mdw
34 * Moved the Karatsuba macros into a separate file for better sharing.
35 * Fixed some comments.
36 *
4468424e 37 * Revision 1.3 1999/12/13 15:35:01 mdw
38 * Simplify and improve.
39 *
1b756626 40 * Revision 1.2 1999/12/11 10:58:02 mdw
41 * Remove tweakable comments.
42 *
a86e33af 43 * Revision 1.1 1999/12/10 23:23:51 mdw
44 * Karatsuba-Ofman multiplication algorithm.
45 *
46 */
47
48/*----- Header files ------------------------------------------------------*/
49
4468424e 50#include <assert.h>
a86e33af 51#include <stdio.h>
52
53#include "mpx.h"
7d5fa32a 54#include "mpx-kmac.h"
a86e33af 55
56/*----- Tweakables --------------------------------------------------------*/
57
a86e33af 58#ifdef TEST_RIG
59# undef KARATSUBA_CUTOFF
60# define KARATSUBA_CUTOFF 2
61#endif
62
a86e33af 63/*----- Main code ---------------------------------------------------------*/
64
65/* --- @mpx_kmul@ --- *
66 *
67 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
68 * @const mpw *av, *avl@ = pointer to first argument
69 * @const mpw *bv, *bvl@ = pointer to second argument
70 * @mpw *sv, *svl@ = pointer to scratch workspace
71 *
72 * Returns: ---
73 *
74 * Use: Multiplies two multiprecision integers using Karatsuba's
75 * algorithm. This is rather faster than traditional long
76 * multiplication (e.g., @mpx_umul@) on large numbers, although
77 * more expensive on small ones.
78 *
79 * The destination must be twice as large as the larger
80 * argument. The scratch space must be twice as large as the
81 * larger argument, plus the magic number @KARATSUBA_SLOP@.
a86e33af 82 */
83
84void mpx_kmul(mpw *dv, mpw *dvl,
85 const mpw *av, const mpw *avl,
86 const mpw *bv, const mpw *bvl,
87 mpw *sv, mpw *svl)
88{
89 const mpw *avm, *bvm;
90 size_t m;
91
92 /* --- Dispose of easy cases to @mpx_umul@ --- *
93 *
94 * Karatsuba is only a win on large numbers, because of all the
95 * recursiveness and bookkeeping. The recursive calls make a quick check
96 * to see whether to bottom out to @mpx_umul@ which should help quite a
97 * lot, but sometimes the only way to know is to make sure...
98 */
99
100 MPX_SHRINK(av, avl);
101 MPX_SHRINK(bv, bvl);
102
103 if (avl - av <= KARATSUBA_CUTOFF || bvl - bv <= KARATSUBA_CUTOFF) {
104 mpx_umul(dv, dvl, av, avl, bv, bvl);
105 return;
106 }
107
108 /* --- How the algorithm works --- *
109 *
7d5fa32a 110 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding,
111 * %$AB = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because
112 * I've got four multiplications, each four times easier than the one I
113 * started with. However, note that I can rewrite the coefficient of %$b$%
114 * as %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
a86e33af 115 * I've already calculated, and that leaves only one more multiplication to
116 * do. So now I have three multiplications, each four times easier, and
117 * that's a win.
118 */
119
120 /* --- First things --- *
121 *
122 * Sort out where to break the factors in half. I'll choose the midpoint
123 * of the largest one, since this minimizes the amount of work I have to do
124 * most effectively.
125 */
126
127 if (avl - av > bvl - bv) {
128 m = (avl - av + 1) >> 1;
129 avm = av + m;
130 if (bvl - bv > m)
131 bvm = bv + m;
132 else
133 bvm = bvl;
134 } else {
135 m = (bvl - bv + 1) >> 1;
136 bvm = bv + m;
137 if (avl - av > m)
138 avm = av + m;
139 else
140 avm = avl;
141 }
142
4468424e 143 assert(((void)"Destination too small for Karatsuba multiply",
144 dvl - dv >= 4 * m));
145 assert(((void)"Not enough workspace for Karatsuba multiply",
146 svl - sv >= 4 * m));
147
148 /* --- Sort out the middle term --- */
a86e33af 149
150 {
4468424e 151 mpw *bsv = sv + m + 1, *ssv = bsv + m + 1;
152 mpw *rdv = dv + m, *rdvl = rdv + 2 * (m + 2);
153
154 UADD2(sv, bsv, av, avm, avm, avl);
155 UADD2(bsv, ssv, bv, bvm, bvm, bvl);
a86e33af 156 if (m > KARATSUBA_CUTOFF)
157 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
158 else
159 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
a86e33af 160 }
161
162 /* --- Sort out the other two terms --- */
163
164 {
4468424e 165 mpw *svm = sv + m, *svn = svm + m, *ssv = svn + 4;
a86e33af 166 mpw *tdv = dv + m;
167 mpw *rdv = tdv + m;
168
4468424e 169 if (avl == avm || bvl == bvm)
170 MPX_ZERO(rdv + m + 1, dvl);
171 else {
172 if (m > KARATSUBA_CUTOFF)
173 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
174 else
175 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
176 MPX_COPY(rdv + m + 1, dvl, svm + 1, svn);
177 UADD(rdv, sv, svm + 1);
178 USUB(tdv, sv, svn);
179 }
180
a86e33af 181 if (m > KARATSUBA_CUTOFF)
182 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
183 else
184 mpx_umul(sv, ssv, av, avm, bv, bvm);
4468424e 185 MPX_COPY(dv, tdv, sv, svm);
186 USUB(tdv, sv, svn);
187 UADD(tdv, svm, svn);
a86e33af 188 }
189}
190
191/*----- Test rig ----------------------------------------------------------*/
192
193#ifdef TEST_RIG
194
195#include <mLib/alloc.h>
196#include <mLib/testrig.h>
197
198#include "mpscan.h"
199
200#define ALLOC(v, vl, sz) do { \
201 size_t _sz = (sz); \
202 mpw *_vv = xmalloc(MPWS(_sz)); \
203 mpw *_vvl = _vv + _sz; \
204 (v) = _vv; \
205 (vl) = _vvl; \
206} while (0)
207
208#define LOAD(v, vl, d) do { \
209 const dstr *_d = (d); \
210 mpw *_v, *_vl; \
211 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
212 mpx_loadb(_v, _vl, _d->buf, _d->len); \
213 (v) = _v; \
214 (vl) = _vl; \
215} while (0)
216
217#define MAX(x, y) ((x) > (y) ? (x) : (y))
218
219static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
220{
221 fputs(msg, stderr);
222 MPX_SHRINK(v, vl);
223 while (v < vl)
224 fprintf(stderr, " %08lx", (unsigned long)*--vl);
225 fputc('\n', stderr);
226}
227
228static int umul(dstr *v)
229{
230 mpw *a, *al;
231 mpw *b, *bl;
232 mpw *c, *cl;
233 mpw *d, *dl;
234 mpw *s, *sl;
235 size_t m;
236 int ok = 1;
237
238 LOAD(a, al, &v[0]);
239 LOAD(b, bl, &v[1]);
240 LOAD(c, cl, &v[2]);
241 m = MAX(al - a, bl - b) + 1;
242 ALLOC(d, dl, 2 * m);
243 ALLOC(s, sl, 2 * m + 32);
244
245 mpx_kmul(d, dl, a, al, b, bl, s, sl);
246 if (MPX_UCMP(d, dl, !=, c, cl)) {
247 fprintf(stderr, "\n*** umul failed\n");
248 dumpmp(" a", a, al);
249 dumpmp(" b", b, bl);
250 dumpmp("expected", c, cl);
251 dumpmp(" result", d, dl);
252 ok = 0;
253 }
254
255 free(a); free(b); free(c); free(d); free(s);
256 return (ok);
257}
258
259static test_chunk defs[] = {
260 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
261 { 0, 0, { 0 } }
262};
263
264int main(int argc, char *argv[])
265{
266 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
267 return (0);
268}
269
270#endif
271
272/*----- That's all, folks -------------------------------------------------*/