math/mpreduce.h: Missing include files.
[u/mdw/catacomb] / math / rho.c
CommitLineData
f41f820e 1/* -*-c-*-
2 *
f41f820e 3 * Pollard's rho algorithm for discrete logs
4 *
5 * (c) 2000 Straylight/Edgeware
6 */
7
45c0fd36 8/*----- Licensing notice --------------------------------------------------*
f41f820e 9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
45c0fd36 16 *
f41f820e 17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
45c0fd36 21 *
f41f820e 22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
f41f820e 28/*----- Header files ------------------------------------------------------*/
29
30#include "fibrand.h"
31#include "mp.h"
32#include "mpmont.h"
33#include "mprand.h"
34#include "rho.h"
35
36/*----- Main code ---------------------------------------------------------*/
37
38/* --- @rho@ --- *
39 *
40 * Arguments: @rho_ctx *cc@ = pointer to the context structure
41 * @void *x, *y@ = two (equal) base values (try 1)
42 * @mp *a, *b@ = logs of %$x$% (see below)
43 *
44 * Returns: The discrete logarithm %$\log_g a$%, or null if the algorithm
45 * failed. (This is unlikely, though possible.)
46 *
47 * Use: Uses Pollard's rho algorithm to compute discrete logs in the
48 * group %$G$% generated by %$g$%.
49 *
50 * The algorithm works by finding a cycle in a pseudo-random
51 * walk. The function @ops->split@ should return an element
52 * from %$\{\,0, 1, 2\,\}$% according to its argument, in order
53 * to determine the walk. At each step in the walk, we know a
54 * group element %$x \in G$% together with its representation as
55 * a product of powers of %$g$% and $%a$% (i.e., we know that
56 * %$x = g^\alpha a^\beta$% for some %$\alpha$%, %$\beta$%).
57 *
58 * Locating a cycle gives us a collision
59 *
60 * %$g^{\alpha} a^{\beta} = g^{\alpha'} a^{\beta'}$%
61 *
62 * Taking logs of both sides (to base %$g$%) gives us that
63 *
64 * %$\log a\equiv\frac{\alpha-\alpha'}{\beta'-\beta}\bmod{n}$%
65 *
66 * Good initial values are %$x = y = 1$% (the multiplicative
67 * identity of %$G$%) and %$\alpha\equiv\beta\equiv0\bmod{n}$%.
68 * If that doesn't work then start choosing more `interesting'
69 * values.
70 *
71 * Note that the algorithm requires minimal space but
72 * %$O(\sqrt{n})$% time. Don't do this on large groups,
73 * particularly if you can find a decent factor base.
74 *
75 * Finally, note that this function will free the input values
76 * when it's finished with them. This probably isn't a great
77 * problem.
78 */
79
80static void step(rho_ctx *cc, void *x, mp **a, mp **b)
81{
82 switch (cc->ops->split(x)) {
83 case 0:
84 cc->ops->mul(x, cc->g, cc->c);
85 *a = mp_add(*a, *a, MP_ONE);
86 if (MP_CMP(*a, >=, cc->n))
87 *a = mp_sub(*a, *a, cc->n);
88 break;
89 case 1:
90 cc->ops->sqr(x, cc->c);
91 *a = mp_lsl(*a, *a, 1);
92 if (MP_CMP(*a, >=, cc->n))
93 *a = mp_sub(*a, *a, cc->n);
94 *b = mp_lsl(*b, *b, 1);
95 if (MP_CMP(*b, >=, cc->n))
96 *b = mp_sub(*b, *b, cc->n);
97 break;
98 case 2:
99 cc->ops->mul(x, cc->a, cc->c);
100 *b = mp_add(*b, *b, MP_ONE);
101 if (MP_CMP(*b, >=, cc->n))
102 *b = mp_sub(*b, *b, cc->n);
103 break;
104 }
105}
106
107mp *rho(rho_ctx *cc, void *x, void *y, mp *a, mp *b)
108{
109 mp *aa = MP_COPY(a), *bb = MP_COPY(b);
110 mp *g;
111
112 /* --- Grind through the random walk until we find a collision --- */
113
114 do {
115 step(cc, x, &a, &b);
116 step(cc, y, &aa, &bb);
117 step(cc, y, &aa, &bb);
118 } while (!cc->ops->eq(x, y));
119 cc->ops->drop(x);
120 cc->ops->drop(y);
121
122 /* --- Now sort out the mess --- */
123
124 aa = mp_sub(aa, a, aa);
125 bb = mp_sub(bb, bb, b);
126 g = MP_NEW;
127 mp_gcd(&g, &bb, 0, bb, cc->n);
22bab86c 128 if (!MP_EQ(g, MP_ONE)) {
f41f820e 129 mp_drop(aa);
130 aa = 0;
131 } else {
132 aa = mp_mul(aa, aa, bb);
133 mp_div(0, &aa, aa, cc->n);
134 }
135
136 /* --- Done --- */
137
138 mp_drop(bb);
139 mp_drop(g);
140 mp_drop(a);
141 mp_drop(b);
142 return (aa);
143}
144
145/* --- @rho_prime@ --- *
146 *
147 * Arguments: @mp *g@ = generator for the group
148 * @mp *a@ = value to find the logarithm of
149 * @mp *n@ = order of the group
150 * @mp *p@ = prime size of the underlying prime field
151 *
152 * Returns: The discrete logarithm %$\log_g a$%.
153 *
154 * Use: Computes discrete logarithms in a subgroup of a prime field.
155 */
156
157static void prime_sqr(void *x, void *c)
158{
159 mp **p = x;
160 mp *a = *p;
161 a = mp_sqr(a, a);
162 a = mpmont_reduce(c, a, a);
163 *p = a;
164}
165
166static void prime_mul(void *x, void *y, void *c)
167{
168 mp **p = x;
169 mp *a = *p;
170 a = mpmont_mul(c, a, a, y);
171 *p = a;
172}
173
174static int prime_eq(void *x, void *y)
175{
22bab86c 176 return (MP_EQ(*(mp **)x, *(mp **)y));
f41f820e 177}
178
179static int prime_split(void *x)
180{
181 /* --- Notes on the splitting function --- *
182 *
183 * The objective is to produce a simple pseudorandom mapping from the
184 * underlying field \gf{p} to \{\,0, 1, 2\,\}$%. This is further
185 * constrained by the fact that we must not have %$1 \mapsto 1$% (since
186 * otherwise the stepping function above will loop).
187 *
188 * The function we choose is very simple: we take the least significant
189 * word from the integer, add one (to prevent the %$1 \mapsto 1$% property
190 * described above) and reduce modulo 3. This is slightly biased against
191 * the result 2, but this doesn't appear to be relevant.
192 */
193
194 return (((*(mp **)x)->v[0] + 1) % 3);
195}
196
197static void prime_drop(void *x)
198{
199 MP_DROP(*(mp **)x);
200}
201
4e66da02 202static const rho_ops prime_ops = {
f41f820e 203 prime_sqr, prime_mul, prime_eq, prime_split, prime_drop
204};
205
206mp *rho_prime(mp *g, mp *a, mp *n, mp *p)
207{
208 rho_ctx cc;
209 grand *r = 0;
210 mpmont mm;
211 mp *x, *y;
212 mp *aa, *bb;
213 mp *l;
214
215 /* --- Initialization --- */
216
217 mpmont_create(&mm, p);
218 cc.ops = &prime_ops;
219 cc.c = &mm;
220 cc.n = n;
221 cc.g = mpmont_mul(&mm, MP_NEW, g, mm.r2);
222 cc.a = mpmont_mul(&mm, MP_NEW, a, mm.r2);
223 x = MP_COPY(mm.r);
224 y = MP_COPY(x);
225 aa = bb = MP_ZERO;
226
227 /* --- The main loop --- */
228
229 while ((l = rho(&cc, &x, &y, aa, bb)) == 0) {
b0b682aa 230 mp_expfactor f[2];
f41f820e 231
232 if (!r)
233 r = fibrand_create(0);
234 aa = mprand_range(MP_NEW, n, r, 0);
235 bb = mprand_range(MP_NEW, n, r, 0);
b0b682aa 236 f[0].base = cc.g; f[0].exp = aa;
237 f[1].base = cc.a; f[1].exp = bb;
f41f820e 238 x = mpmont_mexpr(&mm, MP_NEW, f, 2);
239 y = MP_COPY(x);
240 }
241
242 /* --- Throw everything away now --- */
243
244 if (r)
245 r->ops->destroy(r);
246 mp_drop(cc.g);
247 mp_drop(cc.a);
248 mpmont_destroy(&mm);
249 return (l);
250}
251
252/*----- Test rig ----------------------------------------------------------*/
253
254#ifdef TEST_RIG
255
256#include <stdio.h>
257
258#include "dh.h"
259
260int main(void)
261{
262 dh_param dp;
263 mp *x, *y;
264 grand *r = fibrand_create(0);
265 mpmont mm;
266 mp *l;
267 int ok;
268
269 fputs("rho: ", stdout);
270 fflush(stdout);
271
272 dh_gen(&dp, 32, 256, 0, r, pgen_evspin, 0);
273 x = mprand_range(MP_NEW, dp.q, r, 0);
274 mpmont_create(&mm, dp.p);
275 y = mpmont_exp(&mm, MP_NEW, dp.g, x);
276 mpmont_destroy(&mm);
277 l = rho_prime(dp.g, y, dp.q, dp.p);
22bab86c 278 if (MP_EQ(x, l)) {
f41f820e 279 fputs(". ok\n", stdout);
280 ok = 1;
281 } else {
282 fputs("\n*** rho (discrete logs) failed\n", stdout);
283 ok = 0;
284 }
285
286 mp_drop(l);
287 mp_drop(x);
288 mp_drop(y);
289 r->ops->destroy(r);
290 dh_paramfree(&dp);
291 assert(mparena_count(MPARENA_GLOBAL) == 0);
292
293 return (ok ? 0 : EXIT_FAILURE);
294}
295
296#endif
297
298/*----- That's all, folks -------------------------------------------------*/