Add cyclic group abstraction, with test code. Separate off exponentation
[u/mdw/catacomb] / pfilt.c
CommitLineData
9a8b0c8d 1/* -*-c-*-
2 *
34e4f738 3 * $Id: pfilt.c,v 1.5 2004/04/01 12:50:09 mdw Exp $
9a8b0c8d 4 *
5 * Finding and testing prime numbers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: pfilt.c,v $
34e4f738 33 * Revision 1.5 2004/04/01 12:50:09 mdw
34 * Add cyclic group abstraction, with test code. Separate off exponentation
35 * functions for better static linking. Fix a buttload of bugs on the way.
36 * Generally ensure that negative exponents do inversion correctly. Add
37 * table of standard prime-field subgroups. (Binary field subgroups are
38 * currently unimplemented but easy to add if anyone ever finds a good one.)
39 *
9312c71f 40 * Revision 1.4 2000/10/08 12:14:57 mdw
41 * Remove vestiges of @primorial@.
42 *
b8e79eeb 43 * Revision 1.3 2000/08/15 21:44:27 mdw
44 * (pfilt_smallfactor): New function for doing trial division the hard
45 * way.
46 *
47 * (pfilt_create): Use @mpx_udivn@ for computing residues, for improved
48 * performance.
49 *
50 * Pull the `small prime' test into a separate function, and do it
51 * properly.
52 *
87b63d41 53 * Revision 1.2 2000/06/17 11:54:27 mdw
54 * Use new MP memory management functions.
55 *
9a8b0c8d 56 * Revision 1.1 1999/12/22 15:49:39 mdw
57 * Renamed from `pgen'. Reworking for new prime-search system.
58 *
59 * Revision 1.3 1999/12/10 23:28:35 mdw
60 * Track suggested destination changes.
61 *
62 * Revision 1.2 1999/11/20 22:23:05 mdw
63 * Add multiply-and-add function for Diffie-Hellman safe prime generation.
64 *
65 * Revision 1.1 1999/11/19 13:17:57 mdw
66 * Prime number generator and tester.
67 *
68 */
69
70/*----- Header files ------------------------------------------------------*/
71
72#include "mp.h"
b8e79eeb 73#include "mpint.h"
9a8b0c8d 74#include "pfilt.h"
75#include "pgen.h"
76#include "primetab.h"
77
78/*----- Main code ---------------------------------------------------------*/
79
b8e79eeb 80/* --- @smallenough@ --- *
81 *
82 * Arguments: @mp *m@ = integer to test
83 *
84 * Returns: One of the @PGEN@ result codes.
85 *
86 * Use: Assuming that @m@ has been tested by trial division on every
87 * prime in the small-primes array, this function will return
88 * @PGEN_DONE@ if the number is less than the square of the
89 * largest small prime.
90 */
91
92static int smallenough(mp *m)
93{
94 static mp *max = 0;
95 int rc = PGEN_TRY;
96
97 if (!max) {
98 max = mp_fromuint(MP_NEW, MAXPRIME);
99 max = mp_sqr(max, max);
100 max->a->n--; /* Permanent allocation */
101 }
102 if (MP_CMP(m, <, max))
103 rc = PGEN_DONE;
104 return (rc);
105}
106
107/* --- @pfilt_smallfactor@ --- *
108 *
109 * Arguments: @mp *m@ = integer to test
110 *
111 * Returns: One of the @PGEN@ result codes.
112 *
113 * Use: Tests a number by dividing by a number of small primes. This
114 * is a useful first step if you're testing random primes; for
115 * sequential searches, @pfilt_create@ works better.
116 */
117
118int pfilt_smallfactor(mp *m)
119{
120 int rc = PGEN_TRY;
121 int i;
122 size_t sz = MP_LEN(m);
34e4f738 123 mparena *a = m->a ? m->a : MPARENA_GLOBAL;
124 mpw *v = mpalloc(a, sz);
b8e79eeb 125
126 /* --- Fill in the residues --- */
127
128 for (i = 0; i < NPRIME; i++) {
129 if (!mpx_udivn(v, v + sz, m->v, m->vl, primetab[i])) {
130 if (MP_LEN(m) == 1 && m->v[0] == primetab[i])
131 rc = PGEN_DONE;
132 else
133 rc = PGEN_FAIL;
134 }
135 }
136
137 /* --- Check for small primes --- */
138
139 if (rc == PGEN_TRY)
140 rc = smallenough(m);
141
142 /* --- Done --- */
143
34e4f738 144 mpfree(a, v);
b8e79eeb 145 return (rc);
146}
147
9a8b0c8d 148/* --- @pfilt_create@ --- *
149 *
150 * Arguments: @pfilt *p@ = pointer to prime filtering context
151 * @mp *m@ = pointer to initial number to test
152 *
153 * Returns: One of the @PGEN@ result codes.
154 *
155 * Use: Tests an initial number for primality by computing its
156 * residue modulo various small prime numbers. This is fairly
157 * quick, but not particularly certain. If a @PGEN_TRY@
158 * result is returned, perform Rabin-Miller tests to confirm.
159 */
160
161int pfilt_create(pfilt *p, mp *m)
162{
163 int rc = PGEN_TRY;
164 int i;
b8e79eeb 165 size_t sz = MP_LEN(m);
34e4f738 166 mparena *a = m->a ? m->a : MPARENA_GLOBAL;
167 mpw *v = mpalloc(a, sz);
9a8b0c8d 168
169 /* --- Take a copy of the number --- */
170
171 mp_shrink(m);
172 p->m = MP_COPY(m);
173
174 /* --- Fill in the residues --- */
175
9a8b0c8d 176 for (i = 0; i < NPRIME; i++) {
b8e79eeb 177 p->r[i] = mpx_udivn(v, v + sz, m->v, m->vl, primetab[i]);
9a8b0c8d 178 if (!p->r[i] && rc == PGEN_TRY) {
179 if (MP_LEN(m) == 1 && m->v[0] == primetab[i])
180 rc = PGEN_DONE;
181 else
182 rc = PGEN_FAIL;
183 }
184 }
185
b8e79eeb 186 /* --- Check for small primes --- */
187
188 if (rc == PGEN_TRY)
189 rc = smallenough(m);
190
9a8b0c8d 191 /* --- Done --- */
192
34e4f738 193 mpfree(a, v);
9a8b0c8d 194 return (rc);
195}
196
197/* --- @pfilt_destroy@ --- *
198 *
199 * Arguments: @pfilt *p@ = pointer to prime filtering context
200 *
201 * Returns: ---
202 *
203 * Use: Discards a context and all the resources it holds.
204 */
205
206void pfilt_destroy(pfilt *p)
207{
208 mp_drop(p->m);
209}
210
211/* --- @pfilt_step@ --- *
212 *
213 * Arguments: @pfilt *p@ = pointer to prime filtering context
214 * @mpw step@ = how much to step the number
215 *
216 * Returns: One of the @PGEN@ result codes.
217 *
218 * Use: Steps a number by a small amount. Stepping is much faster
219 * than initializing with a new number. The test performed is
220 * the same simple one used by @primetab_create@, so @PGEN_TRY@
221 * results should be followed up by a Rabin-Miller test.
222 */
223
224int pfilt_step(pfilt *p, mpw step)
225{
226 int rc = PGEN_TRY;
227 int i;
228
229 /* --- Add the step on to the number --- */
230
231 p->m = mp_split(p->m);
232 mp_ensure(p->m, MP_LEN(p->m) + 1);
233 mpx_uaddn(p->m->v, p->m->vl, step);
234 mp_shrink(p->m);
235
236 /* --- Update the residue table --- */
237
238 for (i = 0; i < NPRIME; i++) {
239 p->r[i] = (p->r[i] + step) % primetab[i];
240 if (!p->r[i] && rc == PGEN_TRY) {
241 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
242 rc = PGEN_DONE;
243 else
244 rc = PGEN_FAIL;
245 }
246 }
247
b8e79eeb 248 /* --- Check for small primes --- */
9a8b0c8d 249
b8e79eeb 250 if (rc == PGEN_TRY)
251 rc = smallenough(p->m);
9a8b0c8d 252
253 /* --- Done --- */
254
255 return (rc);
256}
257
258/* --- @pfilt_muladd@ --- *
259 *
260 * Arguments: @pfilt *p@ = destination prime filtering context
261 * @const pfilt *q@ = source prime filtering context
262 * @mpw m@ = number to multiply by
263 * @mpw a@ = number to add
264 *
265 * Returns: One of the @PGEN@ result codes.
266 *
267 * Use: Multiplies the number in a prime filtering context by a
268 * small value and then adds a small value. The destination
269 * should either be uninitialized or the same as the source.
270 *
271 * Common things to do include multiplying by 2 and adding 0 to
272 * turn a prime into a jump for finding other primes with @q@ as
273 * a factor of @p - 1@, or multiplying by 2 and adding 1.
274 */
275
276int pfilt_muladd(pfilt *p, const pfilt *q, mpw m, mpw a)
277{
278 int rc = PGEN_TRY;
279 int i;
280
281 /* --- Multiply the big number --- */
282
283 {
87b63d41 284 mp *d = mp_new(MP_LEN(q->m) + 2, q->m->f);
9a8b0c8d 285 mpx_umuln(d->v, d->vl, q->m->v, q->m->vl, m);
286 mpx_uaddn(d->v, d->vl, a);
9a8b0c8d 287 if (p == q)
288 mp_drop(p->m);
289 mp_shrink(d);
290 p->m = d;
291 }
292
293 /* --- Gallivant through the residue table --- */
294
295 for (i = 0; i < NPRIME; i++) {
296 p->r[i] = (q->r[i] * m + a) % primetab[i];
297 if (!p->r[i] && rc == PGEN_TRY) {
298 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
299 rc = PGEN_DONE;
300 else
301 rc = PGEN_FAIL;
302 }
303 }
304
b8e79eeb 305 /* --- Check for small primes --- */
9a8b0c8d 306
b8e79eeb 307 if (rc == PGEN_TRY)
308 rc = smallenough(p->m);
9a8b0c8d 309
310 /* --- Finished --- */
311
312 return (rc);
313}
314
315/* --- @pfilt_jump@ --- *
316 *
317 * Arguments: @pfilt *p@ = pointer to prime filtering context
318 * @const pfilt *j@ = pointer to another filtering context
319 *
320 * Returns: One of the @PGEN@ result codes.
321 *
322 * Use: Steps a number by a large amount. Even so, jumping is much
323 * faster than initializing a new number. The test peformed is
324 * the same simple one used by @primetab_create@, so @PGEN_TRY@
325 * results should be followed up by a Rabin-Miller test.
326 *
327 * Note that the number stored in the @j@ context is probably
328 * better off being even than prime. The important thing is
329 * that all of the residues for the number have already been
330 * computed.
331 */
332
333int pfilt_jump(pfilt *p, const pfilt *j)
334{
335 int rc = PGEN_TRY;
336 int i;
337
338 /* --- Add the step on --- */
339
340 p->m = mp_add(p->m, p->m, j->m);
341
342 /* --- Update the residue table --- */
343
344 for (i = 0; i < NPRIME; i++) {
345 p->r[i] = p->r[i] + j->r[i];
346 if (p->r[i] > primetab[i])
347 p->r[i] -= primetab[i];
348 if (!p->r[i] && rc == PGEN_TRY) {
349 if (MP_LEN(p->m) == 1 && p->m->v[0] == primetab[i])
350 rc = PGEN_DONE;
351 else
352 rc = PGEN_FAIL;
353 }
354 }
355
b8e79eeb 356 /* --- Check for small primes --- */
9a8b0c8d 357
b8e79eeb 358 if (rc == PGEN_TRY)
359 rc = smallenough(p->m);
9a8b0c8d 360
361 /* --- Done --- */
362
363 return (rc);
364}
365
366/*----- That's all, folks -------------------------------------------------*/