Add an internal-representation no-op function.
[u/mdw/catacomb] / square-mktab.c
CommitLineData
35682d2f 1/* -*-c-*-
2 *
ba74e11e 3 * $Id: square-mktab.c,v 1.2 2000/08/04 18:03:19 mdw Exp $
35682d2f 4 *
5 * Build precomputed tables for the Square block cipher
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: square-mktab.c,v $
ba74e11e 33 * Revision 1.2 2000/08/04 18:03:19 mdw
34 * Fix comment describing the field in which inversion is done.
35 *
35682d2f 36 * Revision 1.1 2000/07/27 18:10:27 mdw
37 * Build precomuted tables for Square.
38 *
39 */
40
41/*----- Header files ------------------------------------------------------*/
42
43#include <assert.h>
44#include <stdio.h>
45#include <stdlib.h>
46
47#include <mLib/bits.h>
48
49/*----- Magic variables ---------------------------------------------------*/
50
51static octet s[256], si[256];
52static uint32 t[4][256], ti[4][256];
53static uint32 u[4][256];
54static octet rc[32];
55
56/*----- Main code ---------------------------------------------------------*/
57
58/* --- @mul@ --- *
59 *
60 * Arguments: @unsigned x, y@ = polynomials over %$\gf{2^8}$%
61 * @unsigned m@ = modulus
62 *
63 * Returns: The product of two polynomials.
64 *
65 * Use: Computes a product of polynomials, quite slowly.
66 */
67
68static unsigned mul(unsigned x, unsigned y, unsigned m)
69{
70 unsigned a = 0;
71 unsigned i;
72
73 for (i = 0; i < 8; i++) {
74 if (y & 1)
75 a ^= x;
76 y >>= 1;
77 x <<= 1;
78 if (x & 0x100)
79 x ^= m;
80 }
81
82 return (a);
83}
84
85/* --- @sbox@ --- *
86 *
87 * Build the S-box.
88 *
89 * This is built from inversion in the multiplicative group of
ba74e11e 90 * %$\gf{2^8}[x]/(p(x))$%, where %$p(x) = x^8+x^7+x^6+x^5+x^4+x^2+1$%,
91 * followed by an affine transformation treating inputs as vectors over
92 * %$\gf{2}$%. The result is a horrible function.
35682d2f 93 *
94 * The inversion is done slightly sneakily, by building log and antilog
95 * tables. Let %$a$% be an element of the finite field. If the inverse of
96 * %$a$% is %$a^{-1}$%, then %$\log a a^{-1} = 0$%. Hence
97 * %$\log a = -\log a^{-1}$%. This saves fiddling about with Euclidean
98 * algorithm.
99 */
100
101#define S_MOD 0x1f5
102
103static void sbox(void)
104{
105 octet log[256], alog[256];
106 unsigned x;
107 unsigned i;
108 unsigned g;
109
110 /* --- Find a suitable generator, and build log tables --- */
111
112 log[0] = 0;
113 for (g = 2; g < 256; g++) {
114 x = 1;
115 for (i = 0; i < 256; i++) {
116 log[x] = i;
117 alog[i] = x;
118 x = mul(x, g, S_MOD);
119 if (x == 1 && i != 254)
120 goto again;
121 }
122 goto done;
123 again:;
124 }
125 fprintf(stderr, "couldn't find generator\n");
126 exit(EXIT_FAILURE);
127done:;
128
129 /* --- Now grind through and do the affine transform --- *
130 *
131 * The matrix multiply is an AND and a parity op. The add is an XOR.
132 */
133
134 for (i = 0; i < 256; i++) {
135 unsigned j;
136 octet m[] = { 0xd6, 0x7b, 0x3d, 0x1f, 0x0f, 0x05, 0x03, 0x01 };
137 unsigned v = i ? alog[255 - log[i]] : 0;
138
139 assert(i == 0 || mul(i, v, S_MOD) == 1);
140
141 x = 0;
142 for (j = 0; j < 8; j++) {
143 unsigned r;
144 r = v & m[j];
145 r = (r >> 4) ^ r;
146 r = (r >> 2) ^ r;
147 r = (r >> 1) ^ r;
148 x = (x << 1) | (r & 1);
149 }
150 x ^= 0xb1;
151 s[i] = x;
152 si[x] = i;
153 }
154}
155
156/* --- @tbox@ --- *
157 *
158 * Construct the t tables for doing the round function efficiently.
159 */
160
161static void tbox(void)
162{
163 unsigned i;
164
165 for (i = 0; i < 256; i++) {
166 uint32 a, b, c, d;
167 uint32 w;
168
169 /* --- Build a forwards t-box entry --- */
170
171 a = s[i];
172 b = a << 1; if (b & 0x100) b ^= S_MOD;
173 c = a ^ b;
174 w = (b << 0) | (a << 8) | (a << 16) | (c << 24);
175 t[0][i] = w;
176 t[1][i] = ROL32(w, 8);
177 t[2][i] = ROL32(w, 16);
178 t[3][i] = ROL32(w, 24);
179
180 /* --- Build a backwards t-box entry --- */
181
182 a = mul(si[i], 0x0e, S_MOD);
183 b = mul(si[i], 0x09, S_MOD);
184 c = mul(si[i], 0x0d, S_MOD);
185 d = mul(si[i], 0x0b, S_MOD);
186 w = (a << 0) | (b << 8) | (c << 16) | (d << 24);
187 ti[0][i] = w;
188 ti[1][i] = ROL32(w, 8);
189 ti[2][i] = ROL32(w, 16);
190 ti[3][i] = ROL32(w, 24);
191 }
192}
193
194/* --- @ubox@ --- *
195 *
196 * Construct the tables for performing the key schedule.
197 */
198
199static void ubox(void)
200{
201 unsigned i;
202
203 for (i = 0; i < 256; i++) {
204 uint32 a, b, c;
205 uint32 w;
206 a = i;
207 b = a << 1; if (b & 0x100) b ^= S_MOD;
208 c = a ^ b;
209 w = (b << 0) | (a << 8) | (a << 16) | (c << 24);
210 u[0][i] = w;
211 u[1][i] = ROL32(w, 8);
212 u[2][i] = ROL32(w, 16);
213 u[3][i] = ROL32(w, 24);
214 }
215}
216
217/* --- Round constants --- */
218
219void rcon(void)
220{
221 unsigned r = 1;
222 int i;
223
224 for (i = 0; i < sizeof(rc); i++) {
225 rc[i] = r;
226 r <<= 1;
227 if (r & 0x100)
228 r ^= S_MOD;
229 }
230}
231
232/* --- @main@ --- */
233
234int main(void)
235{
236 int i, j;
237
238 puts("\
239/* -*-c-*-\n\
240 *\n\
241 * Square tables [generated]\n\
242 */\n\
243\n\
244#ifndef CATACOMB_SQUARE_TAB_H\n\
245#define CATACOMB_SQUARE_TAB_H\n\
246");
247
248 /* --- Write out the S-box --- */
249
250 sbox();
251 fputs("\
252/* --- The byte substitution and its inverse --- */\n\
253\n\
254#define SQUARE_S { \\\n\
255 ", stdout);
256 for (i = 0; i < 256; i++) {
257 printf("0x%02x", s[i]);
258 if (i == 255)
259 fputs(" \\\n}\n\n", stdout);
260 else if (i % 8 == 7)
261 fputs(", \\\n ", stdout);
262 else
263 fputs(", ", stdout);
264 }
265
266 fputs("\
267#define SQUARE_SI { \\\n\
268 ", stdout);
269 for (i = 0; i < 256; i++) {
270 printf("0x%02x", si[i]);
271 if (i == 255)
272 fputs(" \\\n}\n\n", stdout);
273 else if (i % 8 == 7)
274 fputs(", \\\n ", stdout);
275 else
276 fputs(", ", stdout);
277 }
278
279 /* --- Write out the big t tables --- */
280
281 tbox();
282 fputs("\
283/* --- The big round tables --- */\n\
284\n\
285#define SQUARE_T { \\\n\
286 { ", stdout);
287 for (j = 0; j < 4; j++) {
288 for (i = 0; i < 256; i++) {
289 printf("0x%08x", t[j][i]);
290 if (i == 255) {
291 if (j == 3)
292 fputs(" } \\\n}\n\n", stdout);
293 else
294 fputs(" }, \\\n\
295 \\\n\
296 { ", stdout);
297 } else if (i % 4 == 3)
298 fputs(", \\\n ", stdout);
299 else
300 fputs(", ", stdout);
301 }
302 }
303
304 fputs("\
305#define SQUARE_TI { \\\n\
306 { ", stdout);
307 for (j = 0; j < 4; j++) {
308 for (i = 0; i < 256; i++) {
309 printf("0x%08x", ti[j][i]);
310 if (i == 255) {
311 if (j == 3)
312 fputs(" } \\\n}\n\n", stdout);
313 else
314 fputs(" }, \\\n\
315 \\\n\
316 { ", stdout);
317 } else if (i % 4 == 3)
318 fputs(", \\\n ", stdout);
319 else
320 fputs(", ", stdout);
321 }
322 }
323
324 /* --- Write out the big u tables --- */
325
326 ubox();
327 fputs("\
328/* --- The key schedule tables --- */\n\
329\n\
330#define SQUARE_U { \\\n\
331 { ", stdout);
332 for (j = 0; j < 4; j++) {
333 for (i = 0; i < 256; i++) {
334 printf("0x%08x", u[j][i]);
335 if (i == 255) {
336 if (j == 3)
337 fputs(" } \\\n}\n\n", stdout);
338 else
339 fputs(" }, \\\n\
340 \\\n\
341 { ", stdout);
342 } else if (i % 4 == 3)
343 fputs(", \\\n ", stdout);
344 else
345 fputs(", ", stdout);
346 }
347 }
348
349 /* --- Round constants --- */
350
351 rcon();
352 fputs("\
353/* --- The round constants --- */\n\
354\n\
355#define SQUARE_RCON { \\\n\
356 ", stdout);
357 for (i = 0; i < sizeof(rc); i++) {
358 printf("0x%02x", rc[i]);
359 if (i == sizeof(rc) - 1)
360 fputs(" \\\n}\n\n", stdout);
361 else if (i % 8 == 7)
362 fputs(", \\\n ", stdout);
363 else
364 fputs(", ", stdout);
365 }
366
367 /* --- Done --- */
368
369 puts("#endif");
370
371 if (fclose(stdout)) {
372 fprintf(stderr, "error writing data\n");
373 exit(EXIT_FAILURE);
374 }
375
376 return (0);
377}
378
379/*----- That's all, folks -------------------------------------------------*/