Add an internal-representation no-op function.
[u/mdw/catacomb] / dsarand.c
CommitLineData
5d4a6be9 1/* -*-c-*-
2 *
518749ae 3 * $Id: dsarand.c,v 1.3 2001/02/03 16:08:56 mdw Exp $
5d4a6be9 4 *
5 * Random number generator for DSA
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: dsarand.c,v $
518749ae 33 * Revision 1.3 2001/02/03 16:08:56 mdw
34 * Give generic random objects separate namespaces for their supported misc
35 * ops. Add operations for reading the current seed value.
36 *
702c8f08 37 * Revision 1.2 2000/06/17 10:54:00 mdw
38 * Typesetting fixes. Arena support.
39 *
5d4a6be9 40 * Revision 1.1 1999/12/22 15:53:12 mdw
41 * Random number generator for finding DSA parameters.
42 *
43 */
44
45/*----- Header files ------------------------------------------------------*/
46
47#include <stdarg.h>
48#include <string.h>
49
702c8f08 50#include <mLib/alloc.h>
5d4a6be9 51#include <mLib/bits.h>
52#include <mLib/sub.h>
53
54#include "dsarand.h"
55#include "grand.h"
56#include "sha.h"
57
58/*----- Main code ---------------------------------------------------------*/
59
60/* --- @STEP@ --- *
61 *
62 * Arguments: @dsarand *d@ = pointer to context
63 *
64 * Use: Increments the buffer by one, interpreting it as a big-endian
65 * integer. Carries outside the integer are discarded.
66 */
67
68#define STEP(d) do { \
69 dsarand *_d = (d); \
70 octet *_p = _d->p; \
71 octet *_q = _p + _d->sz; \
72 unsigned _c = 1; \
73 while (_c && _q > _p) { \
74 _c += *--_q; \
75 *_q = U8(_c); \
76 _c >>= 8; \
77 } \
78} while (0)
79
80/* --- @dsarand_init@ --- *
81 *
82 * Arguments: @dsarand *d@ = pointer to context
83 * @const void *p@ = pointer to seed buffer
84 * @size_t sz@ = size of the buffer
85 *
86 * Returns: ---
87 *
88 * Use: Initializes a DSA random number generator.
89 */
90
91void dsarand_init(dsarand *d, const void *p, size_t sz)
92{
93 d->p = xmalloc(sz);
94 d->sz = sz;
702c8f08 95 d->passes = 1;
5d4a6be9 96 if (p)
97 memcpy(d->p, p, sz);
98}
99
100/* --- @dsarand_reseed@ --- *
101 *
102 * Arguments: @dsarand *d@ = pointer to context
103 * @const void *p@ = pointer to seed buffer
104 * @size_t sz@ = size of the buffer
105 *
106 * Returns: ---
107 *
108 * Use: Initializes a DSA random number generator.
109 */
110
111void dsarand_reseed(dsarand *d, const void *p, size_t sz)
112{
702c8f08 113 xfree(d->p);
5d4a6be9 114 d->p = xmalloc(sz);
115 d->sz = sz;
116 d->passes = 1;
117 if (p)
118 memcpy(d->p, p, sz);
119}
120
121/* --- @dsarand_destroy@ --- *
122 *
123 * Arguments: @dsarand *d@ = pointer to context
124 *
125 * Returns: ---
126 *
127 * Use: Disposes of a DSA random number generation context.
128 */
129
130void dsarand_destroy(dsarand *d)
131{
702c8f08 132 xfree(d->p);
5d4a6be9 133}
134
135/* --- @dsarand_fill@ --- *
136 *
137 * Arguments: @dsarand *d@ = pointer to context
138 * @void *p@ = pointer to output buffer
139 * @size_t sz@ = size of output buffer
140 *
141 * Returns: ---
142 *
143 * Use: Fills an output buffer with pseudorandom data.
144 *
145 * Let %$p$% be the numerical value of the input buffer, and let
146 * %$b$% be the number of bytes required. Let
702c8f08 147 * %$z = \lceil b / 20 \rceil$% be the number of SHA outputs
5d4a6be9 148 * required. Then the output of pass %$n$% is
149 *
150 * %$P_n = \sum_{0 \le i < z} 2^{160i} SHA(p + nz + i)$%
151 * %${} \bmod 2^{8b}$%
152 *
153 * and the actual result in the output buffer is the XOR of all
154 * of the output passes.
155 *
156 * The DSA procedure for choosing @q@ involves two passes with
157 * %$z = 1$%; the procedure for choosing @p@ involves one pass
158 * with larger %$z$%. This generalization of the DSA generation
159 * procedure is my own invention but it seems relatively sound.
160 */
161
162void dsarand_fill(dsarand *d, void *p, size_t sz)
163{
164 octet *q = p;
165 unsigned n = d->passes;
166
167 /* --- Write out the first pass --- *
168 *
169 * This can write directly to the output buffer, so it's done differently
170 * from the latter passes.
171 */
172
173 {
174 size_t o = sz;
175
176 while (o) {
177 sha_ctx h;
178
179 /* --- Hash the input buffer --- */
180
181 sha_init(&h);
182 sha_hash(&h, d->p, d->sz);
183
184 /* --- If enough space, extract the hash output directly --- */
185
186 if (o >= SHA_HASHSZ) {
187 o -= SHA_HASHSZ;
188 sha_done(&h, q + o);
189 }
190
191 /* --- Otherwise take the hash result out of line and copy it --- */
192
193 else {
194 octet hash[SHA_HASHSZ];
195 sha_done(&h, hash);
196 memcpy(q, hash + (SHA_HASHSZ - o), o);
197 o = 0;
198 }
199
200 /* --- Step the input buffer --- */
201
202 STEP(d);
203 }
204
205 /* --- Another pass has been done --- */
206
207 n--;
208 }
209
210 /* --- Write out subsequent passes --- *
211 *
212 * The hash output has to be done offline, so this is slightly easier.
213 */
214
215 while (n) {
216 size_t o = sz;
217
218 while (o) {
219 sha_ctx h;
220 octet hash[SHA_HASHSZ];
221 size_t n;
222 octet *pp, *qq;
223
224 /* --- Hash the input buffer --- */
225
226 sha_init(&h);
227 sha_hash(&h, d->p, d->sz);
228 sha_done(&h, hash);
229
230 /* --- Work out how much output is wanted --- */
231
232 n = SHA_HASHSZ;
233 if (n > o)
234 n = o;
235 o -= n;
236
237 /* --- XOR the data out --- */
238
239 for (pp = hash + (SHA_HASHSZ - n), qq = q + o;
240 pp < hash + SHA_HASHSZ; pp++, qq++)
241 *qq ^= *pp;
242
243 /* --- Step the input buffer --- */
244
245 STEP(d);
246 }
247
248 /* --- Another pass is done --- */
249
250 n--;
251 }
252}
253
254/*----- Generic pseudorandom-number generator interface -------------------*/
255
256static const grand_ops gops;
257
258typedef struct gctx {
259 grand r;
260 dsarand d;
261} gctx;
262
263static void gdestroy(grand *r)
264{
265 gctx *g = (gctx *)r;
266 dsarand_destroy(&g->d);
267 DESTROY(g);
268}
269
270static int gmisc(grand *r, unsigned op, ...)
271{
272 gctx *g = (gctx *)r;
273 va_list ap;
274 int rc = 0;
275 va_start(ap, op);
276
277 switch (op) {
278 case GRAND_CHECK:
279 switch (va_arg(ap, unsigned)) {
280 case GRAND_CHECK:
281 case GRAND_SEEDBLOCK:
282 case GRAND_SEEDRAND:
283 case DSARAND_PASSES:
518749ae 284 case DSARAND_SEEDSZ:
285 case DSARAND_GETSEED:
5d4a6be9 286 rc = 1;
287 break;
288 default:
289 rc = 0;
290 break;
291 }
292 break;
293 case GRAND_SEEDBLOCK: {
294 const void *p = va_arg(ap, const void *);
295 size_t sz = va_arg(ap, size_t);
296 dsarand_reseed(&g->d, p, sz);
297 } break;
298 case GRAND_SEEDRAND: {
299 grand *rr = va_arg(ap, grand *);
300 rr->ops->fill(rr, g->d.p, g->d.sz);
301 } break;
302 case DSARAND_PASSES:
303 g->d.passes = va_arg(ap, unsigned);
304 break;
518749ae 305 case DSARAND_SEEDSZ:
306 rc = g->d.sz;
307 break;
308 case DSARAND_GETSEED:
309 memcpy(va_arg(ap, void *), g->d.p, g->d.sz);
310 break;
5d4a6be9 311 default:
312 GRAND_BADOP;
313 break;
314 }
315
316 va_end(ap);
317 return (rc);
318}
319
320static void gfill(grand *r, void *p, size_t sz)
321{
322 gctx *g = (gctx *)r;
323 dsarand_fill(&g->d, p, sz);
324}
325
326static const grand_ops gops = {
327 "dsarand",
702c8f08 328 0, 0,
5d4a6be9 329 gmisc, gdestroy,
330 grand_word, grand_byte, grand_word, grand_range, gfill
331};
332
333/* --- @dsarand_create@ --- *
334 *
335 * Arguments: @const void *p@ = pointer to seed buffer
336 * @size_t sz@ = size of seed buffer
337 *
338 * Returns: Pointer to a generic generator.
339 *
340 * Use: Constructs a generic generator interface over a Catacomb
341 * entropy pool generator.
342 */
343
344grand *dsarand_create(const void *p, size_t sz)
345{
346 gctx *g = CREATE(gctx);
347 g->r.ops = &gops;
348 dsarand_init(&g->d, p, sz);
349 return (&g->r);
350}
351
352/*----- That's all, folks -------------------------------------------------*/